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Abstract

These are lecture notes that I use to accompany my graduate teaching in Econometrics
at Oxford. For more details, along with some short videos to accompany these notes,
see the course website: treatment-effects.com. If you spot any typos, send me an email:
francis.ditraglia@economics.ox.ac.uk.
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Chapter 1

Introduction

In this chapter we set the stage for the material to come, introducing the fundamen-
tal problem of causal inference, developing notation for later use, and reviewing some
important facts concerning random variables.

1.1 What are these notes about?

Will earning an MPhil in Economics from Oxford increase your lifetime earnings? Does
eating bacon sandwiches cause cancer? Does watching Fox News cause people to vote
Republican? Will owning a dog increase your lifespan? Each of these questions concerns
the causal effect of a treatment D on an outcome Y . The terminology “treatment”
evokes a medical trial, but we will use the term much more broadly to refer to any variable
D whose causal effect we hope to learn. For us, a treatment could be earning an MPhil,
eating bacon sandwiches, watching Fox news, or owning a dog. These notes will focus on
the case in which D is binary: either zero or one. If you have D = 1 we say that you are
treated; if D = 0 we say that you are untreated. We will be particularly interested in
methods for learning causal effects when the treatment variable is not randomly assigned,
as would be the case in an observational rather than experimental study. So far as I
know, no experiment has yet been carried out in which subjects are randomly compelled
to be dog owners or forced to watch Fox News. Nonetheless papers have been written
and published that attempt to estimate the causal effects of both of these treatments.
We will study methods and assumptions under which observational data can be used
to recover causal effects. We will also consider experiments in which subjects may fail
to comply with their assigned treatments. In this case, the treatments that subjects
actually receive are no longer randomly assigned, even if the treatments that they have
been offered actually were.
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1.2 The Fundamental Problem of Causal Inference

The fundamental problem of causal inference is that we can never observe a person’s
counterfactual outcome. In other words, we can never know what her outcome would
have been if her treatment had been different. After finishing her undergraduate degree,
Alice earned an MPhil in Economics at Oxford. She now makes £75,000 per year. Would
she still have earned as much if she had gone straight to work after finishing her under-
graduate degree? Barry was a vegetarian so he never ate bacon sandwiches. He lived to
the ripe old age of 90 and died in a hang-gliding accident, never having developed cancer.
If he had eaten bacon sandwiches every day, would he have died of cancer at the age of 60
instead? Donald watches Fox News 10 hours a day and always votes for the Republican
candidate. If he hadn’t watched Fox News, would he instead vote for the Democrats?

A counterfactual is a within person comparison: it asks how a given person’s out-
come would have been different if her treatment had been different. Because we can
never observe the same person in two different treatment states, we can never actually
make this comparison. You may be wondering about a before-and-after comparison. For
example, what if we looked at Alice’s wage immediately before she earned the MPhil
and then immediately afterwards. Tracking the same person over time can be an ex-
tremely helpful way to untangle cause-and-effect, as we’ll explore in a later chapter. It
cannot, however, solve the fundamental problem of causal inference: comparing Alice’s
wages at two different points in time is not the same as comparing her wage at the same
point in time across two “parallel universes,” one in which she went straight to work and
another in which she went to Oxford. Most people’s income increases as they gain addi-
tional experience, for example. Comparing Alice’s income before and after might confuse
the effect of more experience in the labor force with the effect of earning an MPhil in
Economics. Or perhaps Alice started the MPhil during an economic boom and finished
during a severe downturn. If so, the fact that her income fell after the MPhil would tell
us little of value: perhaps it would have fallen by more without the degree. Because the
idealized within person comparison is impossible, we will need to develop methods and
assumptions that allow us to substitute a between-person comparison.

1.3 The Potential Outcomes Framework

In order to study causal effects we need a framework that allows us to formally define
them and manipulate them mathematically. Following the bulk of the treatment ef-
fects literature, we will adopt the potential outcomes framework, also know as the
Neyman-Rubin Causal Model. With each person i we associate a pair of potential out-
comes (yi0, yi1). These are precisely the counterfactual outcomes that I discussed in the
preceding section. Suppose, for example, that Alice is person i. Then yi0 is her wage if
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she doesn’t earn the MPhil and yi1 is her wage if she does. Even though we can never
observe both yi0 and yi1 for the same person, we can still imagine that there is a fact of
the matter regarding what Alice’s wage would have been in a parallel universe where her
treatment had been different. Using this notation, (yi1− yi0) is the causal effect for Alice
of earning the Oxford MPhil. This need not be the same as the causal effect for Bob of
earning an Oxford MPhil, or indeed the same as the causal effect of anyone else. In other
words, we will allow for the possibility that treatment effects are heterogeneous.

While we never observe both yi0 and yi1, we always observe one of them. If Alice is
treated then we observe yi1; otherwise we observe yi0. We can express this as follows

yi = (1− di)yi0 + diyi1 = yi0 + di(yi1 − yi0) (1.1)

where yi is person i’s observed outcome and di is an indicator that equals one if she was
treated and zero otherwise. Implicit in this equation and the potential outcomes notation
that we have adopted is a very important assumption that we will maintain throughout
these notes: the stable unit treatment value assumption (SUTVA). This requires
that Alice’s outcome depends only on her own treatment and not the treatments of anyone
else. SUTVA is a strong assumption and it is easy to think of settings where it doesn’t
hold. For example, if Alice gets a flu vaccine this makes Bob less likely to get the flu
regardless of whether he was vaccinated. Finding ways to relax the SUTVA assumption
is a challenging and active area of research that we’ll explore in a later chapter.

1.4 Populations, Observables, and Random Variables

The first step of any causal analysis is to specify the population of interest. Suppose
that we hope to learn the causal effect of watching Fox News on voting behavior. Whose
voting behavior are we interested in? All US voters? Swing voters? Often the choice of
population is dictated by circumstance. Perhaps we have access to a fantastic dataset on
Pennsylvania voters but no information about voters from other states. If so, the causal
claims we can make will necessarily be limited to Pennsylvania: the effect of Fox News
could be markedly different, say, in Florida.

For the most part, these notes will assume that we have already specified a population
of interest and observed a random sample from it. If our population is Pennsylvania
voters, this assumes that we have observed a representative sample of n voters from the
state. But what, precisely, do we observe? As discussed in the previous section, we
can only observe one of a person’s potential outcomes (yi0, yi1), namely the one that
corresponds to her treatment di, as shown in (1.1). At a bare minimum, we will always
assume that both yi and di are observed for each person i in our sample. Most of the
methods we describe below will in fact rely on observing some additional information wi.

6



For this reason, I will refer to (yi, di,wi) as the observables for person i.
Throughout this section and the preceding one I have used lowercase letters: yi rather

than Yi and di rather than Di, for example. I did this to emphasize that we are talking
about specific values for a particular person. There is, in principle, nothing random about
Alice’s treatment, her observed outcome, or her potential outcomes. Randomness enters
only when we view her as merely one member of a population from which we will draw
a random sample. From this point onwards, we will stop thinking about the values for a
particular person and instead think about random variables that represent the notion of
randomly drawing someone from the population of interest.

The idea is as follows. Suppose that 35% of voters in Pennsylvania watch Fox News
(di = 1). Then if I randomly sample a single voter, there is a 35% chance that she
watches Fox News. We can represent this as a random variable D with a Bernoulli(0.35)
distribution. Similarly, if we knew the values of yi and wi for every voter in Pennsylvania,
we could construct random variables Y and W that represent the idea of randomly
selecting a voter and observing her values of yi and wi. Using this abstraction, we
will view the observables (yi, di,wi) for any given person a realization from the joint
distribution of a collection of random variables (Y,D,W ). The thought experiment is
that we reach into the state of Pennsylvania, pull out a voter at random, and observe
(yi, di,wi). Viewed in this way, knowing the values of (yi, di,wi) for everyone in the
population is the same thing as knowing the joint distribution of (Y,D,W ).

Although we can never actually observe the pair (yi0, yi1) for the same person, we
can still imagine reaching into the state of Pennsylvania and learning (yi0, yi1, di,wi) for
a particular person. As above, we can represent this idea using a collection of random
variables: (Y0, Y1, D,W ). Knowing (yi0, yi1, di,wi) for everyone in the population would
be equivalent to knowing the joint distribution of (Y0, Y1, D,W ). Because these ran-
dom variables are constructed from the values for each individual in the population, the
relationship from (1.1) continues to apply, that is

Y = (1−D)Y0 +DY1 = Y0 +D(Y1 − Y0). (1.2)

Equation 1.2 shows that knowledge of the joint distribution of (Y0, Y1, D,W ) implies
knowledge of the joint distribution of (Y,D,W ), because Y is a function of (Y0, Y1, D).
The converse, however, is false: knowledge of a person’s observed outcome and her treat-
ment does not allow us to reconstruct both of her potential outcomes.

1.5 Identification Versus Estimation

It’s important to distinguish the problem of identifying causal effects from the problem
of estimating them. Roughly speaking, identification is about finding the limits of what
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we could ever possibly hope to learn from observable data, while estimation is about
doing our best with the limited data we actually observe.

When studying identification we pretend that we could observe every individual in
the population. We then ask whether this knowledge would provide be enough to answer
a particular question. A bit more formally, suppose that we know the joint distribution
of (Y,D,W ) and hope to learn the value of some quantity θ in our population of interest.
As explained in the preceding section, knowing the distribution of (Y,D,W ) is the same
as knowing the values of (yi, di,wi) for everyone in the population. If this knowledge is
sufficient to uniquely pins down θ, then we say that θ is identified; otherwise we say
that it is unidentified.1 The challenge of identifying causal effects is that we observe
not the joint distribution of potential outcomes (Y0, Y1) but only that of (Y,D,W ). Our
identification question is whether this observed information, combined with appropriate
assumptions, will allow us determine whether D causes Y .

Identification is about populations rather than samples. Estimation, on the other
hand, asks how we can use a sample of observed data to produce a “best guess” of some
quantity of interest θ. In the simplest case, we assume that the researcher observes a
collection of n iid draws (Yi, Di,W i) from the population and ask how this information
can be used to construct an estimator θ̂ of θ with desirable properties. These notes mainly
focus on identification because estimation is meaningless without it: if there is no way
to learn the causal effect of D on Y from knowledge of (yi, di,wi) for everyone in the
population, there is no way to estimate it using a random sample from this population.

1.6 Why Study Average Treatment Effects?

When treatment effects are heterogeneous, every person in the population could have
her own, unique causal effect: (yi1 − yi0). Collecting the individual treatment effects for
each person in our population of interest gives rise to a distribution of causal effects.
Using the random variables defined above, we can represent this distribution using the
random variable (Y1 − Y0). If (Y1 − Y0) were simply a constant, i.e. if treatment effects
were homogeneous, asking whether D causes Y would be the same thing as asking if
(Y1 − Y0) = 0. The sign and magnitude of (Y1 − Y0) would then tell us the direction and
importance of the effect. When treatment effects are heterogeneous, however, the yes-
or-no question “does D cause Y ?” no longer makes sense. Watching Fox News will not
make Bernie Sanders vote Republican, but it might still affect the average swing voter in
western Pennsylvania, for example. Faced with effects that vary across people, the natural

1Notice the use of the word sufficient in the definition of identification. Saying that θ is identified
doesn’t mean that knowing the joint distribution of (Y,D,W ) is necessary to uniquely pin down θ. For
example, uniquely determining the vector of slope coefficients from a regression of Y on (D,W ) would
only require us to know the means, covariances, and variances of these random variables.
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question is “how do they vary?” In other words, what can we say about the distribution
of (Y1 − Y0)? If we could learn the distribution of (Y1 − Y0) across the population, we
could answer a variety of interesting questions. For example: “what fraction of people
benefit from this treatment?” or “what is the variance of treatment effects?”

Unfortunately it is impossible to learn the distribution of treatment effects. As we
discussed above, the fundamental problem of causal inference is that we can never observe
both yi1 and yi0 for the same person. For this reason, there is no way to identify the
joint distribution of (Y0, Y1). If we want to determine the correlation between height and
weight, we need observations of both variables for the same people. So too, identifying the
joint distribution between (Y0, Y1) would require observations of both potential outcomes
for the same people. Because we observe Y0 for a subset of the population and Y1 for
another subset, we can learn the marginal distributions of Y0 and Y1. What we can never
learn is the dependence between them.

This problem severely limits our ability to characterize the distribution of (Y1 − Y0).
Suppose, for example, that we wanted to determine Var(Y1−Y0). By the formula for the
variance of a difference,

Var(Y1 − Y0) = Var(Y0) + Var(Y1)− 2Cov(Y0, Y1).

Because the variance of the treatment effects depends on a feature of the joint distribution
of (Y0, Y1)—namely the covariance—this quantity cannot be identified. If we were willing
to assume that Y0 and Y1 are uncorrelated, then we could indeed identify Var(Y1 − Y0)

based on knowledge of Var(Y0) and Var(Y1). In most examples, however, this assumption
is untenable. Consider the problem of identifying the returns to an Oxford MPhil in
Economics. More than likely, people who would earn a higher than average wage without
the MPhil (high Y0) would also earn a higher than average wage with an MPhil (high
Y1), implying a positive correlation between between Y0 and Y1.

It seems as though we have reached an impasse. How can we say anything useful about
(Y1 − Y0) without knowledge of the joint distribution of (Y0, Y1)? Recall a fundamental
property of expectation: linearity. The expectation of a sum equals the sum of the
expectations, and the expectation of a difference equals the difference of expectations.
Thus, taking expectations of both sides

E[Y1 − Y0] = E[Y1]−E[Y0].

We call E[Y1 − Y0] the average treatment effect and abbreviate it ATE. The ATE
measures how large the individual treatment effects (yi1 − yi0) are on average across
everyone in the population. If the ATE is positive, then the treatment is beneficial on
average; if it is negative, then the treatment is harmful on average. If the ATE is zero,
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then the treatment has no effect on average. The primary goal of the treatment effects
literature is to identify the ATE or, failing that, at least an average treatment for some
subset of the population. Undeniably the ATE is a valuable summary of (Y1 − Y0), but
it sweeps many important questions under the rug. What fraction of people would be
harmed by the treatment? Is the treatment effect highly variable, or very similar for
nearly everyone? These are important questions, but they are extremely difficult to
answer. We study average treatment effects not because they are an ideal measure of the
causal effect of D on Y , but because they give us a way around the fundamental problem
of causal inference.

1.7 What about Quantile Treatment Effects?

If you have studied quantile regression, you may have encountered the term quantile
treatment effect. How does this concept relate to our discussion of average treatment
effects from above? Let Q0 be the quantile function of Y0 and Q1 be the quantile function
of Y1. Then Q0(0.5) is the median of Y0 while Q1(0.5) is the median of Y1. Both of
these quantities are identified from the marginal distributions of the potential outcomes.
Indeed, for any quantile τ , both Q0(τ) and Q1(τ) are identified from these marginal
distributions. The difference δ(τ) ≡ Q1(τ) − Q0(τ) is called the quantile treatment
effect of D on Y . Suppose that Alice’s potential outcome without treatment yi0 falls
at the τth quantile of the distribution of Y0. In other words suppose that τ × 100% of
people have a lower value of Y0 than Alice, and (1− τ)× 100% have a higher value of Y0.
Then δ(τ) tells us how much higher Alice’s value of yi1 would need to be in order for her
to fall at the τth quantile of the distribution of Y1 as well.

It might be tempting to suppose that δ(0.5) represents the median of the distribution
of treatment effects (Y1 − Y0). For this to hold, however, requires an assumption called
rank invariance. This stipulates that if Alice occupies the τth quantile of the Y0

distribution, then she also occupies the τth quantile of the Y1 distribution. In other
words, if you lined everyone up based on their values of Y0 they would be in the same
order as if you had lined them up based on their values of Y1: the treatment effect can
have different effects on different people but doesn’t change anyone’s “position in line.”
Under rank invariance, δ(τ) is the causal effect of D on Y for a person who would have
fallen at the τth quantile of Y0 had she not been treated. Rank invariance is a very
strong assumption, and without it quantile treatment effects generally lack a clear causal
interpretation.
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1.8 The problem to overcome: selection bias

We know from above that Y = (1−D)Y0 +DY1. For a person who is treated we observe
Y1 and for a person who is not we observe Y0. So to estimate ATE ≡ E[Y1]−E[Y0], why
not simply compare the average value of Y among those with D = 1 to the average value
of Y among those with D = 0? Because D is binary, this idea is precisely equivalent to
running a regression of Y on D. To see this we use the following lemma.2

Lemma 1.1. Let W be a binary random variable with P(W = 1) = p. Then for
any random variable X, we have Cov(X,W ) = p(1 − p) [E(X|W = 1)−E(X|W = 0)]

provided that the requisite expectations exist.

Since D is binary, Var(D) = P(D = 1) [1−P(D = 1)]. Thus, applying Lemma 1.1,

βOLS ≡ Cov(D,Y )

Var(D)
= E(Y |D = 1)−E(Y |D = 0). (1.3)

Does βOLS equal the ATE? To find out, we substitute (1.2) into (1.3) yielding

βOLS = E(Y |D = 1)−E(Y |D = 0)

= E [(1−D)Y0 +DY1|D = 1]−E [(1−D)Y0 +DY1|D = 0]

= E [Y1|D = 1]−E [Y0|D = 0] .

These manipulations show that βOLS may not equal the ATE. The unconditional mean
E(Y1) need not equal the conditional mean E(Y1|D = 1), and similarly E(Y0) need not
equal E(Y0|D = 0), because D may be related to the potential outcomes. This problem
is called called selection bias. To better understand it, consider the following example:
let D = 1 if you graduated from university and let Y be your income at age 30. Adding
and subtracting E(Y0|D = 1) from the expression for βOLS, we have

βOLS = E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1)−E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

. (1.4)

The first term in (1.4) is the average causal effect of the treatment on the treated
abbreviated TOT. This measures causal effect of graduating from university on income av-
eraged over all the people in the population who chose to graduate from university. When
treatment effects are heterogeneous the TOT need not equal the ATE. Mark Zuckerberg
famously dropped out of Harvard University in his sophomore year (D = 0) but is cur-
rently one of the highest earning people on the planet. Presumably his decision to leave
university was motivated by a belief that his personal treatment effect yi1− yi0 was nega-
tive: the time he would have spent studying could be put to more lucrative use developing

2For a proof, see the appendix to this chapter.
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Facebook. If people have some knowledge of their personal treatment effects and are to
some extent free to choose their treatment, then we would expect E(Y1 − Y0|D = 1) to
be higher than the ATE and E(Y1 − Y0|D = 0) to be lower.3

While the TOT does not in general equal the ATE, it is a meaningful and interesting
causal quantity, answering the question “does this treatment help the people who choose
to take it?” The second term in (1.4), on the other hand, totally destroys any hope of
untangling cause-and-effect. This term, called selection bias by most authors, measures
the difference in average values of Y0 between the treated and the untreated. In the
university and income example, it measures something like “difference of outside options”
between those who ultimately chose to attend university and those who did not. If higher
ability people are more likely to graduate from university (D = 1) and also have a higher-
paying outside option Y0, say because ability has a direct effect on income, the second
term in (1.4) will be positive. Thus, even if the TOT were equal to the ATE, βOLS will
not in general identify the average causal effect of D on Y when individuals can choose
their treatment status.

Once you start looking for it, you will find examples of selection bias everywhere.
People who are admitted to hospitals are more likely to die in the next year than people
who are not. This isn’t because hospitals kill people: it’s because sick people are more
likely to go to hospitals. Dog owners are less likely to die over a five year horizon, but
this may simply reflect the fact that healthy people are more likely to get a dog than sick
people: taking care of an animal is a lot of work! Watching Fox News may cause you to
vote Republican, or perhaps voting Republican causes you to watch Fox News.

1.9 Appendix: Proofs and Probability Review

The mathematical level of these notes is fairly modest. I assume throughout, however,
that you are familiar with basic properties of random variables, expectation, variance, and
covariance. In case you need to refresh your memory, this section lists some important
properties that are used throughout the document.

Proof of Lemma 1.1. Let p = P(W = 1) = E(W ) and define m0 = E(X|W = 0) and
m1 = E(X|W = 1) By the shortcut formula and iterated expectations,

Cov(X,W ) = E(XW )−E(X)E(W ) = E [WE(X|W )]−E(X)p

= E(X|W = 1)p−E(X)p = pm1 − pE(X)

3By the Law of Iterated Expectations (Lemma 1.2), the ATE E(Y1 − Y0) is a convex combination of
E(Y1 − Y0|D = 1) and E(Y1 − Y0|D = 0), so it necessarily lies between them.
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Applying iterated expectations a second time,

E(X) = E [E(X|W )] = m0(1− p) + pm1

and substituting this equation into the expression for Cov(X,W ),

Cov(X,W ) = pm1 − p [m0(1− p) + pm1] = (p− p2)m1 − p(1− p)m0

= p(1− p)(m1 −m0) = p(1− p) [E(X|W = 1)−E(X|W = 0)]

Lemma 1.2 (The Law of Iterated Expectations).

E[Y ] = EX [E(Y |X)] , E[Y |Z] = EX|Z [E(Y |X,Z)]

Lemma 1.3 (Taking out what is known). If f is a measurable function, then

E[f(X)Y |X] = f(X)E[Y |X]

Lemma 1.4 (The Law of Total Probability). For discrete random variables X and Y

P(Y = y) =
∑
all x

P(Y = y|X = x)P(X = x)

Lemma 1.5 (Linearity of Expectation). For RVs X,Y, Z and constants a, b, c

E[aX + bY + c] = aE[X] + bE[Y ] + c, E[aX + bY + c|Z] = aE[X|Z] + bE[Y |Z] + c

Lemma 1.6 (Bayes’ Theorem).

P(A|B) =
P(B|A)P(A)

P(B)
, P(A|B,C) =

P(B|A,C)P(A|C)

P(B|C)

Definition 1.1 (Variance and Conditional Variance).

Var(X) ≡ E
[
(X −E {X})2

]
, Var(X|Z) ≡ E

[
(X −E {X|Z})2

∣∣Z]
Definition 1.2 (Covariance and Conditional Covariance).

Cov(X,Y ) ≡ E [(X −E {X}) (Y −E {Y })]

Cov(X,Y |Z) ≡ E [ (X −E {X|Z}) (Y −E {Y |Z})|Z]

13



Lemma 1.7 (Shortcut Rule for Variance and Covariance).

Var(X) = E[X2]−E[X]2

Var(X|Z) = E[X2|Z]−E[X|Z]2

Cov(X,Y ) = E[XY ]−E[X]E[Y ]

Cov(X,Y |Z) = E[XY |Z]−E[X|Z]E[Y |Z]

Lemma 1.8 (Properties of Variance and Covariance).

(i) Cov(X,X) = Var(X)

(ii) Var(aX + c) = a2Var(X)

(iii) Var(aX + bY + c) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

(iv) Cov(aX + bY + c, Z) = aCov(X,Z) + bCov(Y, Z)

Lemma 1.9 (Properties of Conditional Variance and Covariance).

(i) Var(X|X) = 0

(ii) Cov(X,Y |X) = 0

(iii) Cov(X,X|Z) = Var(X|Z)

(iv) Var(aX + c|Z) = a2Var(X|Z)

(v) Var(aX + bY + c) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

(vi) Cov(aX + bY + c, Z|W ) = aCov(X,Z|W ) + bCov(Y, Z|W )

Lemma 1.10 (The Law of Total Variance).

Var(Y ) = E [Var(Y |X)] + Var (E[Y |X])

Lemma 1.11 (The Law of Total Covariance).

Cov(X,Y ) = E [Cov(X,Y |Z)] + Cov [E(X|Z),E(Y |Z)]

14



Chapter 2

Conditional Independence

To understand the literature on treatment effects, you will need to develop some famil-
iarity with the notion of conditional independence and its properties. This chapter
provides an overview. We begin by defining independence and the closely related idea of
conditional independence, and go on to explain the consequences that these notions have
for expectations. This allows us to propose our first solution to the problem of selection
bias: randomly assigning individuals to treatment.

The remainder of the chapter discusses a set of axioms that allow us to manipulate
conditional independence relationships. Defining conditional independence and deriving
its axioms for all possible kinds of random variables requires some measure theory. If have
the appropriate background, I recommend reading the technical appendix, section 2.6,
alongside the rest of the chapter. If you are not familiar with measure theory, don’t
worry: you will be able to understand everything except the technical appendix. There
are only two terms from measure theory that I use in the body of the chapter. The
first is that of a measurable function. If you haven’t encountered this term before,
it is just a particular way of saying that a function is “well-behaved.” Any continuous
function is measurable, as is any discontinuous function with a finite or countable number
of discontinuities. The second is the terminology “W is Y -measurable.” In words, this
simply means that if we know the realization of the random variable Y then we also know
the realization of the random variable W .

2.1 Intuition and Notation

Two continuous random variables X and Y are independent if and only if their joint
density equals the product of their marginal densities: f(x, y) = f(x)f(y) for all x, y

in the support sets of X and Y .1 By the definition of a conditional density, f(y|x) =

f(x, y)/f(x) so an equivalent definition of statistical independence is f(y|x) = f(y) for
1For discrete RVs, replace densities with mass functions throughout, e.g. p(x, y) = p(x)p(y).
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all x, y in the support sets of X and Y . In other words, X and Y are independent if and
only if knowing X provides no additional information about Y : the conditional density
of Y given X is the same as the marginal density of Y . Of course we could just have
easily reversed the roles of X and Y : an additional equivalent definition of conditional
independence is f(x|y) = f(x).

A closely related property is conditional independence. Two continuous random
variables X and Y are conditionally independent given a third random variable Z if
and only if f(x, y|z) = f(x|z)f(y|z) for all x, y, z in the support sets of X,Y, Z. Us-
ing the definition of a conditional density, f(y|x, z) = f(x, y|z)/f(x|z), this is equiv-
alent to f(y|x, z) = f(y|z). Reversing the roles of y and x, it is also equivalent to
f(x|y, z) = f(x|z).2 If X and Y are conditionally independent given Z, this means that
any dependence between X and Y comes solely from the fact that both are dependent on
Z. In words: if we already know Z, then knowing X tells us nothing additional about Y ,
and vice-versa. We define conditional independence for continuous random vectors anal-
ogously: X and Y are conditionally independent given Z if f(x,y|z) = f(x|z)f(y|z),
or equivalently if f(y|x, z) = f(y|z) or f(x|y, z) = f(x|z). For discrete random vectors,
replace densities with mass functions.3

Independence, conditional and unconditional, is such an important concept in statis-
tics and econometrics that it has its own symbol: “ |= .” If we write X |= Y this means
that X is independent of Y ; if we write X |= Y |Z, this means that X is independent of
Y , given Z. The same notation is used for random variables and random vectors.

2.2 Independence versus Mean Independence

Because our goal is to identify average treatment effects, we will be particularly interested
in the consequences that conditional independence has for means.

Lemma 2.1. Let X,Y, Z be random variables. If X |= Y |Z then

(i) E[XY |Z] = E[X|Z]E[Y |Z]

(ii) E[Y |X,Z] = E[Y |Z]

(iii) E[X|Y, Z] = E[X|Z].

Proof. The general case follows as a corollary of Proposition 2.1. Here we will assume
that that X,Y, Z are continuous random variables. Results for discrete RVs follow by

2There are in fact many equivalent definitions of conditional independence. For full details see the
Technical Appendix (section 2.6).

3For a fully general definition of conditional independence, see the Technical Appendix (section 2.6).
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replacing integrals with sums. For (i), use f(x, y|z) = f(x|z)f(y|z) and the definition of
conditional expectation to write

E[XY |Z = z] =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y|z) dx dy =

∫ ∞

−∞

∫ ∞

−∞
xyf(x|z)f(y|z) dx dy

=

∫ ∞

−∞
yf(y|z)

(∫ ∞

−∞
xf(x|z)dx

)
dy = E[X|Z = z]

∫ ∞

−∞
yf(y|z)dy

= E[X|Z = z]E[Y |Z = z].

For (ii), use f(y|x, z) = f(y|z) and the definition of conditional expectation to write

E[Y |X = x, Z = z] =

∫ ∞

−∞
yf(y|x, z) dy =

∫ ∞

−∞
yf(y|z) dy = E[Y |Z = z].

The argument for (iii) is nearly identical, combining f(x|y, z) = f(x|z) with the definition
of conditional expectation.

Properties (ii) and (iii) of the lemma are often called mean independence. It is
important to remember that conditional independence implies mean independence but
not the other way around. Conditional independence is the stronger assumption. There
is also a version of Lemma 2.1 that holds without conditioning on Z: X |= Y implies that
E[XY ] = E[X]E[Y ], E[Y |X] = E[Y ], and E[X|Y ] = E[X]. A good exercise would be to
prove these implications for yourself if X and Y are continuous. Similar results also hold
for random vectors: if X |= Y |Z then E[Y |X,Z] = E[Y |Z] and E[X|Y ,Z] = E[X|Z].
Moreover, if X |= Y then E[Y |X] = E[Y ] and E[X|Y ] = E[X].

2.3 Randomize treatments to eliminate selection bias.

Now that we know something about mean independence, we can propose our first solution
to the problem of selection bias, as described in section 1.8 above. Suppose that, instead
of arising naturally from the decisions people make, treatments were randomly assigned to
people, independently of any of their characteristics. In this case, D would be independent
of (Y0, Y1). By an argument nearly identical to that in Lemma 2.1 only without the “Z”
this would imply that E(Y0|D) = E(Y0) and E(Y1|D) = E(Y1). Thus,

βOLS = E(Y |D = 1)−E(Y |D = 0)

= E(Y1|D = 1)−E(Y0|D = 0)

= E(Y1 − Y0) = ATE
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if D |= (Y0, Y1). In words: there is no selection bias in a randomized experiment in which
subjects are not free to choose their treatment.4 Because randomized experiments are
immune to selection bias, experimental studies are considered by many to be a “gold
standard” against which other kinds of studies, such as those based on observational data,
are to be judged. Valuable though they can be when applied carefully and interpreted
correctly, however, randomized controlled trials are no panacea. For a recent critique, see
Deaton and Cartwright (2018).

2.4 The Axioms of Conditional Independence

Now that we understand what conditional independence means, we have to learn how to
work with it mathematically. Our approach will be axiomatic: we will state a number
of abstract properties that the independence operator |= satisfies and see how to use
these to derive new properties. The result will be a kind of “algebra” of conditional
independence: we will learn a number of rules with which we can manipulate a given
conditional independence assumption to transform it into new conditional independence
assumptions. All of the axioms of conditional independence can be rigorously proved
from first principles: see the Technical Appendix for details (section 2.6). The names
attached to axioms (i) and (iii)–(v) are taken from Pearl (1988). Axiom (ii) has not been
given a name in the literature, so I have christened it the “redundancy” property. Note
that when we write W = h(Y ) where h is a measurable function, this is equivalent to
saying that W is Y -measurable: in other words, knowing the realization of Y tells us
with certainty the realization of W .

Theorem 2.1 (Axioms of Conditional Independence). Let X,Y, Z,W be random vari-
ables defined on a common probability space, and let h be a measurable function. Then:

(i) (Symmetry): X |= Y |Z =⇒ Y |= X|Z.

(ii) (Redundancy): X |= Y |Y .

(iii) (Decomposition): X |= Y |Z and W = h(Y ) =⇒ X |= W |Z.

(iv) (Weak Union): X |= Y |Z and W = h(Y ) =⇒ X |= Y |(W,Z).

(v) (Contraction): X |= Y |Z and X |= W |(Y, Z) =⇒ X |= (Y,W )|Z.

We begin with some important discussion of what these properties mean, how they
can be used, and how they relate to properties used by other authors.

4This rules out settings in which some experimental subjects refuse to comply with the treatment
they have been randomly assigned. We take up this more challenging case in a later chapter.
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Random Variables vs. Vectors All of the results from above and the Technical Ap-
pendix, including Proposition 2.1 and Theorem 2.1, hold regardless of whether X,Y, Z,W

are real-valued random variables, random vectors, or arbitrary collections of random vari-
ables and vectors. This is important, as it is typically necessary to find “clever” choices
of X,Y, Z,W when applying the axioms of conditional independence. Often this requires
defining one or more of these to be a collection of random variables, as we will see in
many of the examples below.

Conditional vs. Unconditional Axioms Axioms (i) and (iii)–(v) are stated con-
ditional on Z, but these same statements also hold unconditionally by dropping Z.5

Because it is easier to put these unconditional versions of the axioms into words, I omit
explicit conditioning on Z in some of the verbal explanations below.

Symmetry The symmetry property says that if learning Y does not give us any in-
formation about X, then learning X does not give us any information about Y . This is
actually somewhat surprising, as the equality E (1 {AX} |Y, Z) = E (1 {AX} |Z) does not
treat X and Y symmetrically. Symmetry only becomes intuitively clear after establishing
Proposition 2.1.

Redundancy The redundancy property says that if I already know Y , then learning
Y a second time provides no additional information about X. Since X |= Y |Y implies
Y |= X|Y by symmetry, another way of interpreting this condition is that, conditional
on itself, a random variable Y is independent of any other random variable. In fact we
can establish a more general result using similar reasoning, namely X |= W |Y if W is
Y -measurable. A proof of this fact using the axioms of conditional independence appears
in the following section.

Decomposition The decomposition property says that if learning Y provides no in-
formation about X, then learning a function of Y likewise provides no information about
X. If W is a measurable function of Y than it contains at most the same information
content as Y . A common use of decomposition is to drop a random variable from a
conditional independence statement. For example, suppose that X1 |= (X2, X3)|Z. Since
X2 is (X2, X3)-measurable, it follows that X1 |= X2|Z. Analogously, X1 |= X3|Z. This
consequence of the decomposition axiom is what some authors call “the decomposition
property.”

Weak Union The weak union property says that if learning Y provides no information
about X, then learning Y after having already learned a function of Y likewise provides no

5Formally, this is equivalent to taking σ(Z) = ∅.
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information about X. In effect, weak union allows us to add something to our conditioning
set. A common application of this property is to move a random variable from the “left”
of the conditioning bar to the “right.” For example, suppose that X1 |= (X2, X3)|Z. Since
X2 is (X2, X3)-measurable, weak union gives X1 |= (X2, X3)|(X3, Z). It follows by decom-
position that X1 |= X2|(X3, Z). Naturally, the same logic shows that X1 |= X3|(X2, Z).
This consequence of the weak union and decomposition axioms is what some authors call
the “weak union property.”

Contraction The contraction property is a bit complicated to put into words. In
effect, it allows us to move a random variable from the “right” of the conditioning bar
to the “left”. For example, suppose that X1 |= X2|(X3, X4) and we want to show that
X1 |= (X2, X3)|X4. If X1 |= X3|X4, then contraction will give us our desired result.

2.5 More Properties of Conditional Independence

The axioms of conditional independence from Theorem 2.1 provide a simple but powerful
way to deduce new conditional independence relationships from old ones.

Corollary 2.1. X |= Y |Z implies (X,Z) |= Y |Z.

Proof of Corollary 2.1. By symmetry,

Y |= X|Z (2.1)

and by redundancy,
Y |= (X,Z)|(X,Z). (2.2)

Now, applying the decomposition property to (2.2)

Y |= Z|(X,Z) (2.3)

and hence, applying the contraction property to (2.1) and (2.3), we obtain Y |= (X,Z)|Z.
The result follows by symmetry.

Another simple result that can be derived from the axioms of conditional probability
is the following extension of the redundancy property. This does not appear in any
references that I have seen, but it is easy to establish using the axioms of conditional
independence.

Corollary 2.2. Let W = h(Y ) where h is a measurable function. Then X |= W |Y .

Proof of Corollary 2.2. By redundancy X |= Y |Y . By decomposition, taking Y to be
“Z,” this yields X |= W |Y .

20



The well known-result that X |= Y |Z implies f(X) |= g(Y )|Z also follows directly from
the axioms of conditional independence.

Corollary 2.3. Let f and g be measurable functions. Then X |= Y |Z =⇒ f(X) |= g(Y )|Z.

Proof of Corollary 2.3. By decomposition, X |= g(Y )|Z. Hence, by symmetry g(Y ) |= X|Z.
Applying decomposition a second time, g(Y ) |= f(X)|Z. The result follows by a final ap-
plication of symmetry.

2.6 Appendix: Technical Details

Definition 2.1 (Conditional Independence). Let X,Y, Z be random variables defined on
a common probability space (Ω,A,P). We say that X is conditionally independent of
Y given Z (with respect to P), written X |= Y |Z if for all events AX ∈ σ(X) we have
E (1 {AX} |Y, Z) = E (1 {AX} |Z), P-almost surely.

Proposition 2.1 (Equivalent Definitions of Conditional Independence). Let X,Y, Z be
random variables defined on a common probability space (Ω,A,P). Then the following
statements are equivalent:

(i) X |= Y |Z

(ii) For all real, bounded, measurable functions f , E [f(X)|Y, Z] = E [f(X)|Z]

(iii) For all, real, bounded, measurable functions f, g, E [f(X)g(Y )|Z] = E [f(X)|Z]E [g(Y )|Z]

(iv) For all AX ∈ σ(X) and all AY ∈ σ(Y ), E [1 {AX ∩ AY } |Z] = E [1 {AX} |Z]E [1 {AY } |Z]

where all equalities of conditional expectations are understood to hold P-almost surely.

Proof of the Symmetry Property. The symmetry property follows immediately from
the alternative definition of conditional independence given in Proposition 2.1 (iii).

Proof of the Redundancy Property. Let f and g be real-valued, bounded, measur-
able functions. Since g(Y ) is Y -measurable,

E [f(X)g(Y )|Y ] = E[f(X)|Y ]g(Y ) = E [f(X)|Y ]E[g(Y )|Y ]

so the result follows by Proposition 2.1 (iii).

Proof of the Decomposition Property. Let f be a real-valued, bounded, measurable
function. Since W is a measurable function of Y , we have σ(W ) ⊆ σ(Y ) and consequently
σ(W,Z) ⊆ σ(Y, Z). Hence, by the tower property of conditional expectation,

E [f(X)|W,Z] = E {E [f(X)|Y, Z] |W,Z} .
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But since X |= Y |Z, Proposition 2.1 (ii) gives E [f(X)|Y, Z] = E [f(X)|Z]. And because
E [f(X)|Z] is (W,Z)-measurable,

E {E [f(X)|Z] |W,Z} = E [f(X)|Z]E [1|W,Z] = E [f(X)|Z] .

Thus, E [f(X)|W,Z] = E [f(X)|Z] so the result follows by Proposition 2.1 (ii).

Proof of the Weak Union Property. Let f be a real-valued, bounded, measurable
function. Since W is a measurable function of Y , we have σ(W ) ⊆ σ(Y ). As a re-
sult, it follows that σ(Y,W,Z) = σ(Y, Z) and hence E[f(X)|Y,W,Z] = E[f(X)|Y, Z].
Now, since X |= Y |Z, Proposition 2.1 (ii) gives E[f(X)|Y, Z] = E[f(X)|Z]. Finally, since
X |= Y |Z and W is Y -measurable, the decomposition property, Theorem 2.1 (iii), gives
X |= W |Z and hence E [f(X)|Z] = E [f(X)|Z,W ]. Hence, the result follows by Proposi-
tion 2.1 (ii).

Proof of the Contraction Property. Let f be a real, bounded, measurable function.
Now, since X |= W |(Y, Z) we have E[f(X)|Y,W,Z] = E[f(X)|Y, Z] by Proposition 2.1
(ii). Similarly, since X |= Y |Z we have E[f(X)|Y, Z] = E[f(X)|Z]. Combining these
equalities gives E[f(X)|Y,W,Z] = E[f(X)|Z] so the result follows by Proposition 2.1
(i).
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Chapter 3

Partial Identification

Sections 1.5, 1.6, and 1.7 of chapter 1 touched on identification and the limits of causal
inference. Because we can never observe Y0 and Y1 for the same person, many interesting
causal quantities are fundamentally unidentifiable. It’s not a matter of getting more or
better data, or thinking up new and more powerful statistical techniques; we’re simply
out of luck. But, at least as defined in section 1.5, identification is an extremely de-
manding concept: it requires us to be able to uniquely determine θ given knowledge of
the distribution of (Y,D,W ). In many problems, however, there is an interesting middle
ground. This chapter adds some nuance to our earlier discussion of identification and
the limits of causal inference by introducing the concept of partial identification. The
rough idea is as follows. Even if we can’t pin it down exactly, we may still be able to rule
out a wide range of values for θ. By ruling out enough values, we may even be able to
answer our research question without determining the precise value of θ.

3.1 What is Partial Identification?

Here’s a simple example that you may have seen before: linear regression with classical
measurement error. Let α and β be the intercept and slope coefficients from a population
linear regression of Y on X, so that Y = α + βX + U where

β ≡ Cov(X,Y )

Var(X)
, α ≡ E[Y ]− βE[X], U ≡ Y − α− βX, E(XU) = E(U) = 0.

Asking whether a parameter is identified amounts to asking whether we could determine
its exact value, given unlimited data. To be more precise, replace “given unlimited data”
with “assuming that we know the joint distribution of any observed variables.” This is
worth emphasizing: whether a parameter is identified depends on what we can observe.
For example, suppose that we could observe both X and Y . Then our identification
exercise would begin by assuming that we know the joint distribution of (X,Y ), call it
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f(x, y). This is enough information to uniquely determine α and β, since

µY ≡ E[Y ] =

∫ ∞

−∞
y

[∫ ∞

−∞
f(x, y) dx

]
dy

µX ≡ E[X] =

∫ ∞

−∞
x

[∫ ∞

−∞
f(x, y) dy

]
dx

Cov(X,Y ) =

∫ ∞

−∞

∫ ∞

−∞
(x− µX)(y − µY )f(x, y) dx dy

Var(X) =

∫ ∞

−∞
(x− µX)

2

[∫ ∞

−∞
f(x, y) dy

]
dx.

In the parlance of chapter 1, we would say that α and β are identified. In this chapter,
however, we need to be a bit more precise. Because we can rule out all possible values
for α and β except for a single point, we say that these parameters are point identified.

Now let X̃ ≡ X +W where W is classical measurement error: Cov(W,X) = 0,
Cov(W,U) = 0, and E(W ) = 0. What happens if we observe the noisy “proxy” variable
X̃ instead of the true regressor X? Can we uniquely determine α and β from the joint
distribution of (X̃, Y )? Call the associated density f(x̃, y). As above, we can “integrate
out” X̃ to learn the marginal density f(y) of Y , from which we can calculate E(Y ).
What about the remaining quantities? First, E[X] = E[X̃−W ] = E[X̃] since E[W ] = 0.
Similarly, since Cov(W,U) = Cov(W,X) = 0,

Cov(X̃, Y ) = Cov(X +W,Y ) = Cov(X, Y ) + Cov(W,Y )

= Cov(X,Y ) + Cov(W,α + βX + U)

= Cov(X,Y ) + Cov(W,U) + βCov(W,X)

= Cov(X,Y )

so Cov(X,Y ), which we cannot directly compute, equals Cov(X̃, Y ), which we can. The
problem is Var(X). Since X and W are uncorrelated,

Var(X̃) = Var(X +W ) = Var(X) + Var(W )

but because we do not know Var(W ), we cannot compute Var(X). We know that it
cannot be greater than Var(X̃), but this still leaves us unable to calculate α and β since

β ≡ Cov(X,Y )

Var(X)
=

Cov(X̃, Y )

Var(X̃)− Var(W )
, α ≡ E[Y ]− βE[X] = E[Y ]− βE[X̃].

Because we cannot pin down Var(W ), neither α nor β are point identified.1 Nevertheless,
1If you’re reading carefully, you may object that I haven’t proven that we can’t pin down Var(W ).

I’ll address this point in my discussion of “sharp” versus “tight” bounds below.
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we can still say something about Var(W ) given what we can observe, and this will allow
us to construct bounds for α and β. Since Cov(X,Y ) = Cov(X̃, Y ), we have

Cov(X̃, Y )

Var(X̃)
=

Cov(X,Y )

Var(X) + Var(W )
=

Cov(X,Y )/Var(X)

1 + Var(W )/Var(X)
=

β

1 + Var(W )/Var(X)
.

But since 1 + Var(W )/Var(X) ≥ 1, it follows that Cov(X̃, Y )/Var(X̃) has the same sign
as β and moreover ∣∣∣∣∣Cov(X̃, Y )

Var(X̃)

∣∣∣∣∣ ≤ |β|.

In other words, a regression of Y on the observed proxy X̃ tells us the sign of β and
provides a lower bound on its magnitude. To obtain an upper bound, we carry out the
reverse regression: X̃ on Y . This gives

Cov(X̃, Y )

Var(Y )
=

Cov(X,Y )

β2Var(X) + Var(U)
=

βVar(X)

β2Var(X) + Var(U)
.

Taking the reciprocal of this expression,

Var(Y )

Cov(X̃, Y )
= β +

Var(U)

βVar(X)
= β

[
1 +

Var(U)

β2Var(X)

]
.

Since the term in the square brackets is strictly larger than one, Var(Y )/Cov(X̃, Y ) has
the same sign as β and ∣∣∣∣∣ Var(Y )

Cov(X̃, Y )

∣∣∣∣∣ ≥ |β|.

Combining the two inequalities, we have shown that β lies between Cov(X̃, Y )/Var(X̃)

and Var(Y )/Cov(X̃, Y ). These are often called the reverse regression bounds. Since
β is bounded and α depends only on β and the observed means E[Y ] and E[X̃], the
regression intercept is likewise bounded.

The preceding is perhaps the simplest interesting example of partial identification:
although we cannot pin down α and β exactly–neither is point identified–we can construct
meaningful bounds for both. A parameter that is not point identified but can be bounded
using what we observe is said to be partially identified.2 We call the range of values
that lie inside the bounds, i.e. the possible values for the parameter, the identified set.
All else equal, we’d prefer our parameters to be point identified. So when presented with
the consolation prize of partial identification, it’s natural to wonder if our identified set
is of any use. There are two related but distinct concepts lurking here: sharpness and
tightness. We say that an identified set is sharp if it represents the best possible bounds

2Some authors prefer the term “set identified.”
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for our parameter of interest given what we can observe and what we have assumed. A
sharp identified set exploits all available information. In contrast, an identified set that is
not sharp leaves money on the table: we could improve our bounds by doing some extra
work, without the need to observe anything extra or make any additional assumptions.
Proving that a particular identified set is sharp can sometimes be very challenging. Even
when a proof exists, actually computing the sharp identified set from a given dataset may
be a Herculean task. For this reason, non-sharp bounds are fairly common. It turns out
that our bounds for β in the classical measurement error problem are in fact sharp. They
cannot be improved unless we observe something additional, like a second measure of X,
or make an additional assumption, such as independence between X and (U,W ) rather
than uncorrelatedness. As an example of a non-sharp bound, consider the statement “β
lies between zero and Var(Y )/Cov(X̃, Y ).” This is perfectly true, but we know that a
better bound exists because we’ve calculated it!

In contrast to sharpness, which has a precise definition, tightness is to a certain extent
in the eye of the beholder. We say that an identified set is tight when it is small enough
to be useful in practice. An identified set could be sharp but not tight, tight but not
sharp, both sharp and tight, or neither sharp nor tight. To get a better sense of what
tightness could mean in real life, suppose we were interested in learning the sign of a
parameter θ. An identified set that excludes zero could then be considered tight, as it
allows us to answer our research question. Similarly, there might be an economic theory
that implies φ = 1. If we could construct an identified set for φ that excludes one, this
would be enough to cast doubt on the theory. Although tightness is a desirable property,
it is possible to have too much of a good thing. It is possible for the identified set to be so
tight that it is empty! An empty identified set indicates that there are no values of the
parameter θ that are compatible with both our assumptions and the joint distribution of
what we can observe. For this reason, checking whether the identified set is empty can
be used as a kind of model specification test.

Despite the inherent vagueness of the concept, we can say something more concrete
about tightness in our measurement error example from above. Let r be the correlation
between Y and X̃. Then, we have

r2 ≡ Cov(X̃, Y )2

Var(X̃)Var(Y )
=

Cov(X̃, Y )

Var(X̃)
· Cov(X̃, Y )

Var(Y )
.

Re-arranging, it follows that

r2 · Var(Y )

Cov(X̃, Y )
=

Cov(X̃, Y )

Var(X̃)
.

This allows us to compute a simple expression for the width of the reverse regression
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bound for β as follows:

Width =

∣∣∣∣∣ Var(Y )

Cov(X̃, Y )
− Cov(X̃, Y )

Var(X̃)

∣∣∣∣∣ = (1− r2)

∣∣∣∣∣ Var(Y )

Cov(X̃, Y )

∣∣∣∣∣ .
All else equal, the bound for β is narrower, and hence tighter, when the correlation
between X̃ and Y is large in absolute value. This makes intuitive sense. Since W is
uncorrelated with U and X by assumption, any correlation between X̃ = X + W and
Y = α + βX + U must be driven by correlation between X and Y . If X̃ and Y were
perfectly correlated, this would imply that Var(U) = Var(W ) = 0. The stronger the
observed correlation between X̃ and Y the less “room” is left for measurement error in
either variable.

3.2 Bounding the ATE

Now that we’ve covered the basics of partial identification, it’s time to apply what we’ve
learned to the ostensible topic of these notes, treatment effects! This section considers
a number of simple methods for bounding the average treatment effect (ATE) without
assuming that the treatment is randomly assigned, following Manski (2003). In broad
strokes, the idea is to ask what can be learned by making assumptions that are weaker
than those typically used to obtain point identification.

We start with the simple observation that in many real-world applications the poten-
tial outcomes (Y0, Y1) are themselves bounded. To keep things simple, in this section we’ll
assume that both the treatment and the potential outcomes are binary. As a concrete
example: does attending an Ivy League university (D = 1) cause you to continue your
studies and earn a PhD (Y = 1)?3 Or does it merely reflect the fact that academically-
inclined students are more likely to apply to and be accepted at elite undergraduate
institutions? As usual, the observed outcome Y equals Y0 if D = 0 and Y1 if D = 1, i.e.

Y = (1−D)Y0 +DY1 = Y0 +D(Y1 − Y0).

If (Y0, Y1) were conditionally mean independent of D–E[Y0|D] = E[Y0] and E[Y1|D] =

E[Y1]–the ATE would be point identified:

E[Y |D = 1]−E[Y |D = 0] = E[Y1|D = 1]−E[Y0|D = 0] = E[Y1]−E[Y0] = ATE.

Notice that E[Y1|D] = E[Y1] is equivalent to E[Y1|D = 1] = E[Y1|D = 0]. In the
(Ivy League → PhD) example, this says that people who do not attend an Ivy League

3The “Ivy League” is a group of eight elite, east coast private Universities in the US: Brown, Columbia,
Cornell, Dartmouth, Harvard, UPenn, Princeton, and Yale.
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institution would go on to receive PhD degrees at the same rate as people who do attend
an Ivy League institution, provided that we forcibly enrolled them at Harvard or Yale.
Similarly, E[Y0|D] = E[Y0] is equivalent to E[Y0|D = 0] = E[Y0|D = 1]. This says that
people who do attend an Ivy League institution would go on to receive PhD degrees at
the same rate as people who do not attend an Ivy League institution, provided that we
forcibly prevented them from going to Harvard. Together, these conditions completely
rule out selection into treatment. Given what we know about Ivy League admissions and
what it takes to earn a PhD, this is wildly implausible. Our goal in this section is to
say something useful about the average treatment effect E[Y1 − Y0] while allowing for
self-selection into treatment.

Let’s start off by asking what we know about the ATE before observing any data.
Because expectation is linear, ATE = E[Y1]−E[Y0]. And since the the outcome is binary,
0 ≤ Y0 ≤ 1 and 0 ≤ Y1 ≤ 1. Expectation preserves inequalities, so it follows that
0 ≤ E[Y1] ≤ 1 and 0 ≤ E[Y0] ≤ 1. Therefore −1 ≤ ATE ≤ 1. This isn’t a terribly
exciting bound, but you have to start somewhere! In the remainder of this section, we’ll
explore different ways of improving it.

First it will be helpful to introduce a bit of shorthand. Define

P11 ≡ P(Y = 1|D = 1) = E[Y |D = 1] = E[Y1|D = 1]

P10 ≡ P(Y = 1|D = 0) = E[Y |D = 0] = E[Y0|D = 0]

p ≡ P(D = 1) = E(D).

We will assume throughout that the joint distribution of (Y,D) is observed. Since P11,
P10, and p are all quantities that we can compute from this joint distribution, we can
consider them “observed” as well.

3.2.1 Assumption-Free Bounds

Before observing the data, we know that −1 ≤ ATE ≤ 1. Now suppose that we observe
the joint distribution of Y and D. If we are unwilling to make any assumptions whatsoever
about the relationship between D and the underlying potential outcomes (Y0, Y1), is there
any way to improve the bound? By iterated expectations,

E[Y1] = ED [E (Y1|D)] = E[Y1|D = 1]P(D = 1) +E[Y1|D = 0]P(D = 0)

= P11p+E[Y1|D = 0](1− p)

Since p and P11 are observed, E[Y1|D = 0] is the only unknown in the equation for E[Y1].
But since Y0 is binary, 0 ≤ E[Y1|D = 0] ≤ 1. Substituting gives a bound for E[Y1],

pP11 ≤ E[Y1] ≤ pP11 + (1− p).
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We can use the same idea to bound E[Y0]. First,

E[Y0] = ED [E(Y0|D)] = E[Y0|D = 1]P(D = 1) +E[Y0|D = 0]P(D = 0)

= E[Y0|D = 1]p+ P10(1− p).

And since E[Y0|D = 1] is bounded between 0 and 1,

(1− p)P10 ≤ E[Y0] ≤ p+ (1− p)P10

Combining the bounds for E[Y1] and E[Y0] gives

pP11 − (1− p)P10 − p ≤ ATE ≤ pP11 − (1− p)P10 + (1− p).

Defining the shorthand q ≡ [pP11 − (1− p)P10 − p], we have shown that

q ≤ ATE ≤ (q + 1), q ≡ [pP11 − (1− p)P10 − p] (3.1)

Notice that the bound from (3.1) always has width equal to one. This means that it is
always half as wide as our earlier bound −1 ≤ ATE ≤ 1. The assumption-free bounds
are big improvement, but since q ≤ 0 and q + 1 ≥ 0, they always include zero.4 If we
hope to determine the sign of the ATE, we’ll need to impose stronger restrictions.

3.2.2 Monotone Treatment Selection (MTS)

The bound from (3.1) was completely assumption-free. As such, we would expect that
adding additional information in the form of extra assumptions should tighten our bounds
for the ATE. We now consider one such assumption: monotone treatment selection
or MTS for short. In the previous section we made no assumption whatsoever about
the relationship between D and (Y0, Y1). As such, we allowed arbitrary self-selection into
treatment. MTS still allows self-selection into treatment, but it assumes we know the
direction of any selection effect that may be present. For positive selection into treatment,
MTS posits that

E[Y1|D = 0] ≤ E[Y1|D = 1], and E[Y0|D = 0] ≤ E[Y0|D = 1].

For negative selection into treatment, we simply reverse the preceding inequalities. For
concreteness, we will assume positive selection for the rest of the section. Recall from
above that,

E[Y1] = pP11 + (1− p)E[Y1|D = 0]

4Notice that q = −p(1− P11)− (1− p)P10 ≤ 0 while q + 1 = (1− p)(1− P10) + pP11 ≥ 0.
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by iterated expectations. Under positive MTS, E[Y1|D = 0] ≤ E[Y1|D = 1] and thus

E[Y1] ≤ pP11 + (1− p)E[Y1|D = 1]

= pP11 + (1− p)P11 = P11.

Similarly, recall from above that

E[Y0] = pE[Y0|D = 1] + (1− p)P10.

Since E[Y0|D = 0] ≤ E[Y0|D = 1] under positive MTS, it follows that

E[Y0] ≥ pE[Y0|D = 0] + (1− p)P10

= pP10 + (1− p)P10 = P10.

We have thus shown that positive MTS implies E[Y1] ≤ P11 and P10 ≤ E[Y0]. Combining
the largest possible value of E[Y1] with the smallest possible value of E[Y0] gives us an
new upper bound for the ATE, namely ATE ≤ P11 − P10. But is this actually a better
bound that ATE ≤ (q + 1) from (3.1)? The answer is yes. Rearranging, we see that

q + 1 = pP11 − (1− p)P10 − p+ 1

= (1− p) + pP11 − P10 + pP10

= (1− p) + pP11 − P10 + pP10 + (P11 − P11)

= (P11 − P10) + (1− p)− (1− p)P11 + pP10

= (P11 − P10) + [(1− p)(1− P11) + pP10]

≥ P11 − P10

since (1−p), (1−P11), p, and P10 are all probabilities, implying that [(1− p)(1− P11) + pP10]

cannot be negative. Therefore the upper bound ATE ≤ P11−P10 obtained under positive
MTS cannot be less informative than the no-assumptions upper bound ATE ≤ (q + 1).
Positive MTS does not affect the no-assumptions lower bound for the ATE. Therefore
our final result is

q ≤ ATE ≤ P11 − P10, q ≡ [pP11 − (1− p)P10 − p]. (3.2)

Since P11 ≡ E[Y1|D = 1] while P10 ≡ E[Y0|D = 0], notice that

P11 − P10 = E[Y1|D = 1]−E[Y0|D = 0] = E[Y |D = 1]−E[Y |D = 0].

Under no selection into treatment, E[Y |D = 1] − E[Y |D = 0] equals the ATE; under
positive MTS it is the upper bound for the ATE in our binary outcome example.
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3.2.3 Monotone Treatment Response (MTR)

Whereas MTS places an assumption of the direction of selection, monotone treatment
response, or MTR for short, places an assumption on the direction of causal effects.
Positive MTR imposes Y1 − Y0 ≥ 0; for negative MTR, simply reverse the inequality.5

Positive MTR says that no one experiences a negative treatment effect. Depending on
the application, this assumption may be reasonable or it may be absurd. In a medical
trial, it’s likely that at least some people are allergic to a given medication. Even if it
helps the vast majority of people, a treatment that harms anyone does not satisfy positive
MTR. In the (Ivy League → PhD) example, the question becomes: are there any people
who would not earn a PhD if they attended an Ivy League undergraduate institution
but would earn a PhD if they did not? It is unclear whether positive MTR holds in this
example. On the one hand you might argue that access to elite educational opportunities
shouldn’t hurt one’s chance of continuing to doctoral studies. On the other hand, there
may be students who would flourish in a small liberal arts college but feel intimidated
and “lost in the crowd” at Harvard.

For the sake of argument, let’s suppose that positive MTR does hold. We will show
that this implies ATE ≥ 0. Since Y1 > Y0 for everyone under positive MTR, it is also
true that Y1 > Y0 when we restrict attention to people with D = 0 or people with D = 1.
Since expectation preserves inequalities, it follows that

0 ≤ E[Y0|D = 1] ≤ E[Y1|D = 1] = E[Y |D = 1] = P11

1 ≥ E[Y1|D = 0] ≥ E[Y0|D = 0] = E[Y |D = 0] = P10.

Now, recall from above that

E[Y1] = pP11 + (1− p)E[Y1|D = 0]

E[Y0] = pE[Y0|D = 1] + (1− p)P10.

When using these equalities to construct the assumption-free ATE upper bound in (3.1),
we replaced E[Y1|D = 0] with its largest possible value, one, and E[Y0|D = 1] with its
smallest possible value, zero. Positive MTR doesn’t provide any additional information
that would help us tighten this part of the bound. When constructing our assumption-
free ATE lower bound, on the other hand, we replaced E[Y1|D = 0] with its smallest
possible value, zero, and we replaced E[Y0|D = 1] with its largest possible value, one. But
under positive MTR,

E[Y1|D = 0] ≥ E[Y0|D = 0] = P10 ≥ 0

5If you’re feeling pedantic, strictly speaking we only need P(Y1 − Y0 ≤ 0) = 0.
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and similarly,
E[Y0|D = 1] ≤ E[Y1|D = 1] = P11 ≤ 1.

Substituting P10 for E[Y1|D = 0] in the expression for E[Y1] and P11 for E[Y0|D = 1] in
the expression for E[Y0], we obtain

ATE ≥ [pP11 + (1− p)P10]− [pP11 + (1− p)P10] = 0.

Therefore positive MTR (Y0 ≤ Y1) implies 0 ≤ ATE. Since positive MTR does not affect
the no-assumptions upper bound for the ATE, our final result becomes

0 ≤ ATE ≤ q + 1, q ≡ [pP11 − (1− p)P10 − p]. (3.3)

3.2.4 A Comparison of Bounds

Thus far we have derived three bounds: the “no-assumptions” bound from (3.1), the
positive MTS bound from (3.2), and the positive MTR bound from (3.3). By imposing
both positive MTS and positive MTR simultaneously, we obtain a fourth bound, namely

0 ≤ ATE ≤ (P11 − P10), q ≡ [pP11 − (1− p)P10 − p]. (3.4)

While we haven’t shown this explicitly, each of these bounds is sharp given the assump-
tions that it makes. Of course different assumptions lead to different bounds. In this
section we’ll compare the tightness of the various bounds in a simple numerical example.
Suppose that 8% of Ivy League graduates go on to earn a PhD (P11 = 0.08) compared to
1.5% of the general public (P10 = 0.015). Suppose further that 0.2% of people attend an
Ivy League institution (p = 0.002). Then,

q ≡ pP11 − (1− p)P10 − p

= 0.002× 0.08− (1− 0.002)× 0.015− 0.002 ≈ −0.017

and (q + 1) ≈ 0.983. This gives the following results for our bounds from above:

No Asumptions: [q, q + 1] ≈ [−0.017, 0.983]

Positive MTS: [q, P11 − P10] ≈ [−0.017, 0.065]

Positive MTR: [0, q + 1] ≈ [0, 0.983]

Positive MTS + MTR: [0, P11 − P10] = [0, 0.065].

If P10 = 0.015, P11 = 0.08 and p = 0.002, then without making any assumptions whatso-
ever we can be sure that the ATE, if negative, is not especially large in absolute value.
In contrast, we can’t say much about the upper bound for the ATE unless we are willing

32



to impose further restrictions. Since positive MTR simply replaces the lower bound of q
with a lower bound of zero, it does little to help us in this example. In contrast, positive
MTS drastically reduces our upper bound.

So are these bounds useful, or have I merely wasted your time for the past five pages?
In particular, given that these bounds can never exclude zero, you might ask “what’s the
point?” In some applications, an upper bound of 0.065 for an ATE would be enough to tell
us that the treatment isn’t worth bothering about. In this case, the partial identification
exercise would tell us all we need to know. More broadly, this exercise shows us just how
much extra information random assignment of the treatment, selection-on-observables
assumptions, or instrumental variables bring to the table. Without them, the causal
information that we can extract from observational data is much more limited. It is also
worth pointing out that the preceding bounds are far from the end of the story: they
are really the simplest non-trivial example of applying partial identification to the study
of causal inference. There are many other ways in which partial identification can shed
light on causal questions. In the next section we’ll explore a more interesting example.

3.3 Bounding the Distribution of Treatment Effects

A deadly and contagious disease is sweeping through the land of Erewhon. Fortunately a
promising new treatment has just been subjected to a randomized, double-blind, placebo-
controlled trial. But the treatment comes with its own risks. Before deciding whether to
roll it out on a large scale, Erewhonian physicians want to know not only the ATE, but
also the fraction of people it would help and the fraction it would harm. This is a tall
order. As discussed in chapter 1, the fundamental problem of causal inference is that we
can never observe both Y0 and Y1 for the same person. For this reason, a randomized
controlled trial allows us to learn the marginal distributions of Y0 and Y1, but not their
joint distribution. Features of the distribution of treatment effects that depend only
on the marginals–notably the ATE–are point identified, while features that depend on
the joint distribution–for example the variance of treatment effects–are not. But point
identification isn’t everything. In this section we’ll ask what can be learned about the
distribution of treatment effects from a partial identification perspective.

3.3.1 A Simple Example with Binary Outcomes

To keep things simple, we’ll begin by considering a simple setting with a binary treatment
and binary outcome. In the next section, we’ll consider the general case. Continuing the
disease example introduced above, let Y = 1 be survive and Y = 0 be perish. As
usual D = 1 means treated and D = 0 means control. Since Y is binary, so are the
potential outcomes. This means that there are four possible pairs (Y0, Y1). For later
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reference, we will give each pair an evocative name. There are two groups of people
who are unaffected by the treatment; their treatment effect is exactly zero. Those with
(Y0 = 1, Y1 = 1) will survive with or without the treatment: they are immune. Those
with (Y0 = 0, Y1 = 0), on the other hand, will perish regardless: they are doomed. The
remaining two groups are affected by treatment. Those with (Y0 = 0, Y1 = 1) would
die without treatment, but survive with treatment: they are cured by the treatment.
Finally, those with (Y0 = 1, Y1 = 0) would survive without the treatment, but die if given
the treatment: they are allergic to the treatment.

Y1

0 1

Y0
0 P(Doomed) P(Cured)
1 P(Allergic) P(Immune)

(a) Joint Distribution of Potential Outcomes

P(·)

(Y1 − Y0)-1

Allergic

0

Doomed/Immune

1

Cured

(b) Distribution of Treatment Effects

Figure 3.1: Unobserved Quantities. Neither the joint distribution of potential outcomes (left)
nor the distribution of treatment effects (right) is point identified.

Figure 3.1 depicts the joint distribution of potential outcomes, (3.1a) along with the
corresponding distribution of treatment effects (3.1b) in this example. The fraction of
people with a treatment effect of −1 is P(Allergic), the fraction with a treatment effect
of 1 is P(Cured), and the fraction with a treatment effect of zero is P(Doomed) plus
P(Immune). The Erewhonian physicians, introduced above, want to compare P(Cured)
to P(Allergic) to decided whether the cure is worse than the disease. Unfortunately,
neither of these quantities is observed, since they both depend on the joint distribution
of potential outcomes. Figure 3.2 depicts the quantities that are observed: the marginal
distribution of Y0 (3.2a) and the marginal distribution of Y1 (3.2b). We know these
marginal distributions because the treatment was assigned via a randomized, double-
blind, placebo-controlled experiment: there is no self-selection into treatment, and there
are no placebo effects. And because the outcome is binary, survive or perish, each of the
marginals boils down to a single number: p0 ≡ P(Y0 = 1) for Y0 and p1 ≡ P(Y1 = 1).

In short, then, our partial identification exercise amounts to asking what we can say
about P(Cured) versus P(Allergic) having observed p0 and p1. The trick is to relate
the joint distribution, which we can’t observe, to the marginals, which we can. From
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P(·)

Y00

(1− p0)

1

p0

(a) Marginal Distribution of Y0

P(·)

Y10

(1− p1)

1

p1

(b) Marginal Distribution of Y1

Figure 3.2: Observed Quantities. In a randomized controlled trial, the marginal distributions
of the potential outcomes are point identified.

Figure 3.1a, we see that

1− p0 = P(Y0 = 0) = P(Doomed) +P(Cured)

p0 = P(Y0 = 1) = P(Allergic) +P(Immune)

1− p1 = P(Y1 = 0) = P(Doomed) +P(Allergic)

p1 = P(Y1 = 1) = P(Cured) +P(Immune)

Now, introduce the shorthand α ≡ P(Allergic). Recall that this equals the fraction
of people who would be harmed by the treatment. Re-arranging the expressions for p0

and 1− p1, it follows that

P(Immune) = p0 − α, P(Doomed) = 1− p1 − α.

And since the fraction of people who are Cured necessarily equals the fraction of people
who are not Immune, Doomed, or Allergic,

P(Cured) = 1− (p0 − α)− (1− p1 − α)− α = (p1 − p0) + α.

We see that the fraction of people who are helped (Cured) by the treatment equals the
ATE plus the fraction who are harmed (Allergic). This may seem strange, so here’s
another way to look at it. Because the treatment was randomly assigned, the fraction of
each “type” of person is the same on average in both the treatment groups. In the control
group, p0 survive: the Allergic and the Immune. In the treatment group, p1 survive: the
Cured and the Immune. Taking the difference p1 − p0, cancels out the contribution of
the Immune to p1 and p0. What remains is a positive contribution from P(Cured) and a
negative contribution from P(Allergic). Thus ATE = (p1−p0) = P(Cured)−P(Allergic).
Because Y is binary, in this example a positive average effect necessarily implies that the
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treatment helps more people than it harms. Collecting what we’ve learned so far:

P(Allergic) ≡ α P(Cured) = (p1 − p0) + α

P(Doomed) = 1− p1 − α P(Immune) = p0 − α.

Since we learn p0 and p1 from carrying out the randomized controlled trial, this shows
that we would know the fraction of all four “types,” and hence the full distribution of
treatment effects, if only we knew α. While we cannot point identify α, however, we
can bound it. The idea is as follows. If you tell me a potential value α∗ ∈ [0, 1] for
the share of people harmed by the treatment, I can immediately work out the implied
joint probabilities from Figure 3.1a using the preceding four equalities. These equalities
automatically ensure that the joint distribution implied by your choice α∗ sums to one and
is compatible with the observed marginal distributions, p0 and p1. They do not, however,
ensure that each of the joint probabilities lies between zero and one. Any proposed value
of α∗ that yields a value outside of [0, 1] for P(Cured), P(Doomed) or P(Immune) can
be ruled out as incompatible with what we observe. By collecting all values α∗ ∈ [0, 1]

that are not ruled out, we end up with the sharp identified set for α. By substituting the
endpoints of this set into our expressions for P(Cured) etc., we obtain the sharp identified
set for these quantities as well.

We now construct the identified set for α. Imposing the constraints 0 ≤ P(·) ≤ 1 for
the Cured, Doomed, and Immune yields the following set of inequalities:

0 ≤ (p1 − p0) + α ≤ 1, 0 ≤ 1− p1 − α ≤ 1, 0 ≤ p0 − α ≤ 1.

Re-arranging, and using the fact that ATE = p1 − p0 in this example, we obtain

−ATE ≤ α ≤ 1− ATE, −p1 ≤ α ≤ 1− p1, p0 − 1 ≤ α ≤ p0.

But since α is a probability, and both −p1 and p0− 1 are always negative, we can replace
these lower bounds with zero, yielding

−ATE ≤ α ≤ 1− ATE, 0 ≤ α ≤ 1− p1, 0 ≤ α ≤ p0.

But since we have

1− ATE = 1− (p1 − p0) = (1− p1) + p0 ≥ (1− p1)

and since the upper bounds α ≤ (1− ATE), α ≤ 1− p1 and α ≤ p0, must hold simulta-
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neously, we can simplify these inequalities to

max{−ATE, 0} ≤ α ≤ min{p0, 1− p1}, ATE = (p1 − p0). (3.5)

From (3.5), we see that there are two cases. When the average treatment effect
is negative, we can be sure that some people are harmed by the treatment: the sharp
identified set for α excludes zero. In contrast, when the average treatment effect is positive
we cannot exclude α = 0. In either case, the upper bound for α is min{p0, 1− p1}.

Now we have all the information we need to bound the distribution of treatment
effects from 3.1b. Define the shorthand α ≡ max{−ATE, 0} and α ≡ min{p0, 1− p1} so
the bound for α becomes α ≤ α ≤ α. By definition P(Y1 − Y0 = −1) ≡ α and is hence
bounded between α and α. Since the fraction of people with a treatment effect of zero
equals the fraction of Doomed plus the fraction of Immune,

P(Y1 − Y0 = 0) = P(Doomed) +P(Immune) = (1− p1 − α) + (p0 − α)

= (1− p1) + p0 − 2α.

Since α enters this expression with a minus sign in front of it, we obtain

(1− p1) + p0 − 2α ≤ P(Y1 − Y0 = 0) ≤ (1− p1) + p0 − 2α.

Finally, since the fraction of people with a treatment effect of one equals the fraction of
Cured, we have

P(Y1 − Y0 = 1) = P(Cured) = ATE + α

and thus, we obtain the bounds

ATE + α ≤ P(Y1 − Y0 = 1) ≤ ATE + α.

An interactive webapp posted at the following url illustrates how the bounds we have
derived for the distribution of (Y1 − Y0) vary with p0 and p1:

https://fditraglia.shinyapps.io/binary-treatment-effect-bounds/.
It is important to stress that these bounds are only sharp pointwise. In other words,
for any possible value k of the treatment effect (Y1 − Y0), we have constructed the best
possible bound for P(Y1 − Y0 = k) in isolation. If you are interested in bounding a
quantity that depends on more than one of the probabilities in Figure 3.1b, it is possible
to do better than simply combining the pointwise bounds. For example, suppose you
wanted to bound P(Cured) − P(Allergic). If p1 = 0.7 and p0 = 0.5 then the ATE is
0.7 − 0.5 = 0.2 and we know from above that this equals P(Cured) − P(Allergic). The
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difference in proportions of Cured versus Allergic is point identified in this example. Since

α = {−ATE, 0} = {−0.2, 0} = 0, α = min{p0, 1− p1} = min{0.5, 0.3} = 0.3,

it follows that P(Allergic) ∈ [0, 0.3] while P(Cured) ∈ [0.2, 0.3]. We see that the lower
bound for P(Cured) lies below the upper bound for P(Allergic). But didn’t we just say
that P(Cured)−P(Allergic) is point identified and in fact positive? While this may look
like a contradiction, it isn’t: the lower bound for P(Cured) corresponds to α = α while
the upper bound for P(Allergic) corresponds to α = α. In other words, the seeming
contradiction comes from evaluating the bounds at two different values of α. To form a
joint rather than pointwise bound, we would need to use the same value of α for both.
Doing do would give us precisely the ATE.

3.3.2 The General Case: Fan & Park (2010)

In the previous section we constructed (pointwise) sharp bounds for the distribution of
treatment effects when the outcome was binary. To accomplish this, we asked which
joint distributions for (Y0, Y1) were ruled out by marginal distributions of Y0 and Y1 that
we observed. We then examined all of the joint distributions that were not ruled out to
find the largest and smallest possible values of P(Y1 − Y0 = −1), P(Y1 − Y0 = 0), and
P(Y1 − Y0 = 1). In this section we will discuss a result from Fan and Park (2010) that
applies regardless of whether the outcome is binary, discrete, continuous, or a mixture
of these. The logic is nearly identical to the binary outcome case considered above, but
as the mathematical details are more involved, we will limit ourselves to stating the key
results, and interpreting them in particular examples.6

As above, suppose that we observe the marginal distributions of Y1 and Y0. Let F0(y)

be the CDF of Y0 and F1(y) be the CDF of Y1. Our goal is to bound the CDF F (δ) of
∆ ≡ Y1 − Y0, i.e. the distribution of treatment effects. To state the main result of Fan
and Park (2010) we need to define some additional notation. First, let

F (δ) ≡ sup
y

F1(y)− F0(y − δ). (3.6)

(If you’re unfamiliar with the notation “sup,” cross it out and write max and you’ll still get
the basic idea.) This is a somewhat complicated expression, so let’s disassemble it before
proceeding. We compute F (δ) by choosing a value of δ, then taking the difference between
F1(y) and F0(y−δ) at all values of y, and then finding the value of y at which this difference
is maximal. For example, to compute F (0.2) we would maximize F1(y)−F0(y−0.2) over

6There is one important difference between the binary outcome case and the more general setting
considered in this section: a positive ATE does not in general imply that more people are helped by
the treatment than harmed by it. A treatment that helps a tiny fraction of people by a large amount
and harms everyone else by a small amount can still have a positive ATE.
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y. We defined F1(y) to be the CDF of Y1, but what on earth is F0(y − δ)? When δ = 0

this becomes F0(y), the CDF of Y0. More generally,

F0(y − δ) = P(Y0 ≤ y − δ) = P(Y0 + δ ≤ y).

In other words, F0(y − δ) is the CDF of a random variable constructed by shifting Y0

a total of δ units to the right. The amount that we shift is determined by the location
at which we want to evaluate F . Figure 3.3 shows an example in which we shift F0 two
units to the right. Now define

F (δ) ≡ 1 +

[
inf
y
F1(y)− F0(y − δ)

]
. (3.7)

(If you’re unfamiliar with the notation “inf,” cross it out and write “min.” and you’ll
still get the basic idea.) The definition of F (δ) is very similar to that of F (δ) except that
we compute the minimum difference between F1(y) and F0(y − δ). No we’re ready to
construct the sharp bounds for F (δ).

-5 0 5
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2
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0.
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0.
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F0(y)
F1(y)
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F0(y − 2)
F1(y)

-0.05

0.63

Figure 3.3: An illustration of (3.6) and (3.7) in a hypothetical example with continuous
potential outcomes. The left panel depicts the marginal CDFs of Y0 and Y1. The right panel
depicts the Fan and Park (2010) procedure for bounding F (2) ≡ P(Y1−Y0 ≤ 2). Shift the CDF
of F0 two units to the right and then compute the largest and smallest distances between the
curves, yielding F (2) ∈ [0.63, 1− 0.05].

Theorem 3.1. Let F0(·) be the CDF of Y0, let F1(·) be the CDF of Y1, and let F (·) be
the CDF of ∆ ≡ Y1 − Y0. For any δ,

0 ≤ F (δ) ≤ F (δ) ≤ F (δ) ≤ 1.

where F (·) and F (·) are defined as in (3.6) and (3.7). These bounds bound are sharp.
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Theorem 3.1 gives the sharp bounds for the distribution of treatment effects, F (·),
in terms of the functions F (·) and F (·). Our bounds for the binary outcome example
from above constitute a special case of this result. To see why, recall that in the binary
outcome case,

F0(y) =


0, y < 0

1− p0, 0 ≤ y < 1

1, y ≥ 1

, F1(y) =


0, y < 0

1− p1, 0 ≤ y < 1

1, y ≥ 1

When Y is binary, F (−0.5) equals the fraction of people harmed by the treatment.7

Substituting δ = −0.5 gives

F0(y − δ) = F0(y + 0.5) =


0, y < −0.5

1− p0, −0.5 ≤ y < 0.5

1, y ≥ 0.5

and subtracting this from F1(y) we obtain,

F1(y)− F0(y − δ) = F1(y)− F0(y + 0.5) =



0, y < −0.5

−(1− p0), −0.5 ≤ y < 0

(1− p1)− (1− p0), 0 ≤ y < 0.5

(1− p1)− 1, 0.5 ≤ y < 1

0, y ≥ 1

Notice that F1(y)− F0(y + 0.5) only takes on four distinct values. It follows that

sup
y

F1(y)− F0(y + 0.5) = max{0, (p0 − 1), (p0 − p1), −p1} = max{0, (p0 − p1)}

inf
y
F1(y)− F0(y + 0.5) = min{0, (p0 − 1), (p0 − p1), −p1} = min{(p0 − 1), −p1}

since (p0 − 1) ≤ (p0 − p1) ≤ −p1. This gives us precisely the same bounds for P(Allergic)
as we derived by hand in the preceding section, namely

F (0.5) = max{0,−(p1 − p0)}, F (0.5) = 1 + min{(p0 − 1),−p1} = min{p0, 1− p1}.

This should give us at least some confidence in Theorem 3.1 in spite of our not having
proved it!

Figure 3.3 depicts a more interesting example in which Y0 and Y1 are continuous
random variables. To bound F (2), i.e. P(Y1 − Y0 ≤ 2), we shift the CDF of Y0 two units
to the right. The largest value of F1(y) − F0(y − 2) is approximately 0.63, while the

7Since (Y1 − Y0) ∈ {−1, 0, 1}, any value of δ between −1 and 0 also equals the fraction harmed.
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Figure 3.4: The full set of Fan and Park (2010) bounds for the marginal distributions given
in Figure 3.3.

smallest is approximately −0.05. Therefore 0.63 ≤ F (2) ≤ 0.95. Repeating this process
for a wide range of values of δ gives the full set of (pointwise) bounds for F (·), as shown
in Figure 3.4. This allows us to read of the bound for F (y) for any desired value of y.
For example, from the figure we see that 0.31 ≤ F (0) ≤ 0.84. This means that at least
31% and no more than 84% of people are harmed by this particular treatment.
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Chapter 4

Selection on Observables

As we saw in chapter 2, there is no selection bias when D is randomly assigned: a simple
comparison of mean outcomes between treated and untreated individuals identifies the
ATE. In many examples, however, carrying out a randomized controlled trial may be
infeasible, unethical, or even impossible. In this chapter we will consider an assumption
called selection on observables that allows us to identify the ATE from observational data
by conditioning on observed characteristics X. We’ll consider two different approaches
to identification that both rely on the selection on observables assumption: one based on
regression adjustment and another based on propensity score weighting.

4.1 Does education cause political participation?

This example is based on Kam and Palmer (2008). University graduates are more likely
to vote, volunteer for political campaigns, contact their elected representatives, and par-
ticipate in demonstrations. Does this show that education causes political participation?
Let D = 1 if you attended university and D = 0 otherwise. Further let Y be an index of
political participation, where high values indicate greater participation and lower values
indicate less. It seems hard to believe that D could be independent of the potential out-
comes (Y0, Y1) in this example. University graduates differ from non-graduates in myriad
ways that could also influence political participation. People from wealthy backgrounds
are more likely to graduate from college. They are also more likely to have the leisure
time required for political participation; if you are struggling to make ends meet it will
be hard to find time to attend a political rally. Because it seems far-fetched to imagine
anyone carrying out an experiment that forced some people to attend college and others
not to, observational data is the best we can hope for if our goal is to identify the causal
effect of education on political participation.

The assumption that (Y0, Y1) |= D is clearly untenable, so what could we use instead?
Our main reason for doubting that a simple comparison of mean political participation
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across groups could be given a causal interpretation was that university graduates are
different from non-graduates in more ways than their education level. But perhaps if we
were to condition on these differences, effectively holding them fixed, we could find a way
to make progress. In other words, even if (Y0, Y1) are not independent of D, perhaps there
is a collection of observable individual characteristics X such that (Y0, Y1) |= D|X. For
example, perhaps by conditioning on sex, race, family background and so on we could
break the dependence between college graduation and the potential outcomes. This idea
is called selection on observables because it assumes that selection bias operates solely
through characteristics that we can observe.

4.2 Selection on Observables and Overlap

The methods explored in this chapter rely on two assumptions. First is selection on
observables, as outlined in the previous section. The precise version of this condition that
we will rely on below is as follows.

Assumption 4.1 (Selection on Observables).

E(Y0|X, D) = E(Y0|X), and E(Y1|X, D) = E(Y1|X).

Assumption 4.1 says that the potential outcomes (Y0, Y1) are mean independent of
the treatment D conditional on X. This is weaker than but implied by the conditional
independence assumption, namely (Y0, Y1) |= D|X, described in the previous section.1

Because our goal is to identify a mean, the ATE, we only require a mean independence
assumption. To introduce our second assumption we require the following definition.

Definition 4.1 (Propensity Score). The probability p(X) ≡ P(D = 1|X) of treatment
conditional on an observed random vector X is called the propensity score.

Assumption 4.2 (Overlap). 0 < p(x) < 1 for all x in the support of X.

Assumption 4.2 states that the propensity score is strictly between zero and one for
any value that the covariates X could take on. Since p(x) ≡ P(D = 1|X = x), this
requires that, among people with any fixed value x of the covariates X, some are treated
(D = 1) and some are untreated (D = 0).

Both Assumption 4.1 and Assumption 4.2 are crucial for the methods described be-
low. Unfortunately the two are somewhat at odds with each other. The more observed
controls X that we condition on, the more plausible the selection on observables as-
sumption (Assumption 4.1) becomes.2 At the same time, conditioning on a richer set of

1See part (ii) of Lemma 2.1.
2But beware of bad controls! See section 4.8 for details.
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controls makes it harder to satisfy the overlap condition. Suppose that X includes race,
sex, whether or not you attended an independent secondary school, year of birth, and
post code. It is distinctly possible that every white male who attended an independent
secondary school and was born in 1995 to a wealthy North Oxford family in fact grad-
uated from university. If so, the overlap assumption fails for this particular value of x.
A common although not entirely satisfactory solution to the failure of Assumption 4.2 is
to redefine the population of interest by restricting attention to only those values x for
which overlap holds. For example, we might be forced to exclude people born to wealthy
North Oxford families from our population of interest. Note that if we take this route,
we will identify a different ATE than the one we initially set out to recover: one that
corresponds to the restricted population.

4.3 Identification by Regression Adjustment

Our first approach to identifying the ATE using Assumption 4.1 and Assumption 4.2 is
called regression adjustment. The idea is to compare mean values of Y between treated
and untreated individuals within strata defined by a common value x of the covariates.
This yields a conditional ATE given that X = x. This quantity, which we denote
ATE(x), is the average treatment effect for a certain kind of person, namely someone
with covariates equal to x, e.g. a white male born to a wealthy North Oxford family in
1995. To convert this into an unconditional ATE we average ATE(x) over the distribution
of X in the population using the law of iterated expectations (Lemma 1.2).

Theorem 4.1. Under Assumption 4.1 and Assumption 4.2,

ATE ≡ E(Y1 − Y0) = EX [E(Y |X, D = 1)]−EX [E(Y |X, D = 0)] .

Proof. Since Y = Y0 +D(Y1 − Y0), under selection on observables

E(Y |X, D) = E(Y0|X, D) +D [E(Y1|X, D)−E(Y0|X, D)]

= E(Y0|X) +D [E(Y1|X)−E(Y0|X)]

where the first equality follows by the properties of conditional expectation, and the sec-
ond from Assumption 4.1. Substituting D = 0 and D = 1 into the preceding expression,

E(Y |X, D = 0) = E(Y0|X), E(Y |X, D = 1) = E(Y1|X)

which in turn implies that

ATE(X) = E(Y1 − Y0|X) = E(Y |X, D = 1)−E(Y |X, D = 0).
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The overlap assumption (Assumption 4.2) implies that ATE(X) is well-defined for all
points in the support of X, since it ensures that there are individuals with D = 1 and
D = 0 for any value of the covariates. Hence, taking the expectation of both sides,

ATE = EX [ATE(X)] = EX [E(Y |X, D = 1)]−EX [E(Y |X, D = 0)]

by the law of iterated expectations.

4.4 Estimation by Regression Adjustment

Let µ̂0(X) be a consistent estimator of E(Y |X, D = 0) and µ̂1(X) be a consistent
estimator of E(Y |X, D = 1). Then, under general conditions,

ÂTERA ≡ 1

n

n∑
i=1

[µ̂1(X i)− µ̂0(X i)]

is a consistent estimator of the ATE, where RA stands for regression adjustment. The
question remains: how do we obtain µ̂0(·) and µ̂1(·)? If X is discrete and takes on a small
number of values, we can simply calculate the sample mean of Y at each combination
of (D = 0,X = x) for µ̂0(x) and at each combination of (D = 1,X = x) for µ̂1(x).
If X contains any continuous variables, or is discrete but takes on a large number of
values, however, this approach fails. Non-parametric methods, either series or kernel-
based, provide an alternative but perform poorly when the dimension of X is large.
Model-based approaches are also possible, e.g. assuming that E[Y |D = d,X] is linear
in X for a given value of d. If the model is a poor description of the true conditional
mean function, however, this can produce misleading results. Model-based approaches
can also mask failures of the overlap assumption: they will always generate a value for
E[Y |D = d,X = x] even if there are no individuals in the dataset with (D = d,X = x).
The model extrapolates from values that are actually contained in the dataset. Whichever
method is used to construct estimates µ̂0(·) and µ̂0(·), a simple way to carry out inference
that correctly accounts for this first-stage estimation step is to bootstrap pairs (Yi,X i).

4.5 Identification by Propensity Score Weighting

Our second approach to identifying the ATE using Assumption 4.1 and Assumption 4.2 is
called propensity score weighting. Whereas regression adjustment compares average values
of Y between treated and untreated individuals with the same value of X, propensity
score weighting calculates the average value of Y across everyone in the population with
weights that depend on each person’s actual treatment D and her predicted probability
of treatment: the propensity score.
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Theorem 4.2. Under Assumption 4.1 and Assumption 4.2,

ATE ≡ E(Y1 − Y0) = E

[
{D − p(X)}Y

p(X) {1− p(X)}

]
.

Proof. Since D is binary, D2 = D, (1−D)2 = (1−D), and D(1−D) = 0. Hence,

DY = D2Y1 +D(1−D)Y0 = DY1

(1−D)Y = (1−D)DY1 + (1−D)2Y0 = (1−D)Y0

since Y = DY1 + (1−D)Y0. Thus,

E

[
DY

p(X)

∣∣∣∣X]
=

1

p(X)
E [DY1|X] (4.1)

E

[
(1−D)Y

1− p(X)

∣∣∣∣X]
=

1

1− p(X)
E [ (1−D)Y0|X] . (4.2)

Now, by iterated expectations and Assumption 4.1,

E[DY1|X] = ED|X [E (DY1|D,X)] = ED|X [DE (Y1|D,X)] = ED|X [DE (Y1|X)]

= E[D|X]E[Y1|X] = p(X)E[Y1|X]

where the final equality uses E[D|X] = P(D = 1|X). Similarly,

E[(1−D)Y0|X] = ED|X [E {(1−D)Y0|D,X}] = ED|X [(1−D)E (Y0|D,X)]

= ED|X [(1−D)E (Y0|X)] = E[1−D|X]E[Y0|X]

= [1− p(X)]E[Y0|X]

Substituting these expressions for E[DY1|X] and E[(1−D)Y0|X] into (4.1) and (4.2)

E

[
DY

p(X)

∣∣∣∣X]
= E(Y1|X), E

[
(1−D)Y

1− p(X)

∣∣∣∣X]
= E(Y0|X)

so we see that

ATE(X) ≡ E(Y1 − Y0|X) = E

[
DY

p(X)
− (1−D)Y

1− p(X)

∣∣∣∣X]
= E

[
DY {1− p(X)} − (1−D)Y p(X)

p(X) {1− p(X)}

∣∣∣∣X]
= E

[
DY −DY p(X)− Y p(X) +DY p(X)

p(X) {1− p(X)}

∣∣∣∣X]
= E

[
{D − p(X)}Y

p(X) {1− p(X)}

∣∣∣∣X]
.
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Therefore, taking iterated expectations,

ATE = EX [ATE(X)] = EX

(
E

[
{D − p(X)}Y

p(X) {1− p(X)}

∣∣∣∣X])
= E

[
{D − p(X)}Y

p(X) {1− p(X)}

]
.

4.6 Estimation by Propensity Score Weighting

Suppose we already have a consistent estimator p̂(·) of the propensity score. Then,

ÂTEPSW ≡ 1

n

n∑
i=1

[Di − p̂(X i)]Yi

p̂(X i) [1− p̂(X i)]

where PSW stands for propensity score weighting is a consistent estimator of the ATE
under Assumption 4.1, Assumption 4.2, and appropriate regularity conditions. But how
can we estimate the propensity score? If X is discrete and only takes on a small number
of values, we can estimate the propensity score directly using the sample fraction of
observations with X = x. This approach is no longer possible when any of the elements
of X is continuous and can perform poorly even for discrete X if some values x are shared
by only a small number of people in the sample. A common model-based approach is to fit
a “flexible” logit model, including levels, squares, and interactions of X. Although fairly
widespread and convenient, this approach has the potential to mask failures of overlap:
the logit model will never give p(X) = 0 or 1 regardless of whether there are values of x for
which everyone in the sample is either treated or untreated. Moreover, the particular logit
model that we specify could be a poor reflection of the true propensity score. Another
approach uses non-parametric methods, either series or kernel based, to estimate the
propensity score. While less prone to mis-specification than model-based approaches,
non-parametric methods perform poorly when X is high-dimensional. Regardless of the
particular method used, inference for propensity score weighting is somewhat complicated
by the first-stage estimation of p̂(X). An easy solution is to bootstrap pairs (X i, Yi).

4.7 Regression Adjustment versus Propensity Score
Weighting

In theory, both Theorem 4.1 and Theorem 4.2 identify the same quantity, namely the
ATE.3 In practice, however, because they require us to use the data in different ways,
estimators based on regression adjustment and propensity score weighting will differ,

3If Assumption 4.2 fails and we are forced to restrict attention individuals with values of X for which
overlap holds, then both theorems identify the ATE for this restricted population.
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sometimes substantially. Recall that regression adjustment requires us to model and
estimate the conditional mean of Y given (D = 0,X) and (D = 1,X) whereas propensity
score weighting requires us to model and estimate the conditional probability that D = 1

given X. A particular challenge for propensity score weighting is values of p̂(X i) that
are close to zero or one, as this causes the fraction in ÂTEPSW to become unstable.

4.8 Don’t condition on an intermediate outcome!

The key message of this chapter is that conditioning on the right information can allow
us to identify causal effects even when treatment is not randomly assigned. The key
message of this section is that conditioning on the wrong information can lead us to draw
erroneous causal conclusions even when treatment is indeed randomly assigned. This
problem is commonly known as bad control or conditioning on an intermediate
outcome. We’ll use a simple example to explain the problem and how to avoid it. For
simplicity our discussion will be limited to a binary covariate X that is potentially a “bad
control.” Very similar reasoning applies to any covariate, binary or not.

Gwynaeth attended a bilingual French and English high school in Canada. She is
now a university senior lecturer and earns a good living. Did attending a bilingual high
school cause her earnings to be higher than they otherwise would have been? Let Y be a
person’s wage, and define D = 1 if she attends a bilingual high school and zero otherwise.
Gwynaeth chose to attend a bilingual high school: her D was not randomly assigned.
But imagine that we were to carry out an experiment in which we did randomly assign
D, sending half of a group of students to a bilingual high school and the rest to a regular
high school. Since D |= (Y0, Y1), we have E(Y0|D) = E(Y0) and E(Y1|D) = E(Y1). Thus,

E(Y |D = 1)−E(Y |D = 0) = E(Y1|D = 1)−E(Y0|D = 0) = E(Y1 − Y0) = ATE

since Y = (1 − D)Y0 + DY1. Because students in this hypothetical experiment are
randomly assigned to high schools, we don’t need to condition on anything to identify
the average treatment effect D on Y : a simple comparison of means suffices. But what
would happen if we nevertheless did choose to condition on something?

Given that she is a university senior lecturer, it will come as no surprise that Gwynaeth
attended university herself. Let X = 1 if a person attended university and zero other-
wise. Should we condition on X to estimate the ATE in our hypothetical experiment?
Absolutely not! College attendance X is an intermediate outcome aka a bad control.
Because D causes X as well as Y , the treatment D is no longer randomly assigned if we
condition on X. In other words, conditioning on X introduces selection bias that was not
present unconditionally. We will examine this in two ways: first intuitively using a simple
stylized model, and then mathematically, building on our earlier derivations. Consider
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the following stylized model:

(i) Two factors increase a person’s wage: knowledge K and innate ability A.

(ii) Attending a bilingual high school increases K more than attending a regular one.

(iii) The top 30% of people in the population distribution of (K +A) attend university.

Because D was randomly assigned it is independent of A. This is no longer true,
however, conditional on X. First consider the group of people from our experiment who
attended university (X = 1). Among them, those who didn’t attend a bilingual high
school (D = 0) will have higher average ability than those with did (D = 1). Why is this
the case? Our second assumption was that those who didn’t attend a bilingual school
end up with a lower value of K, on average, than those who did. Thus, for them to make
it into the top 30% of (K + A) requires a higher value of A. Putting it another way, if
you did attend a bilingual school, then you can make in into the top 30% of (K+A) with
a lower value of A. Because those with (D = 1, X = 1) have lower ability than those
with (D = 0, X = 1) and lower ability implies lower wages,

E[Y |D = 1, X = 1]−E[Y |D = 0, X = 1] < E[Y1|X = 1]−E[Y0|X = 1] = ATE(X = 1).

A similar argument shows that, that among those who did not attend university, those
with D = 1 will have lower average ability than those with D = 0.4 It follows that

E[Y |D = 1, X = 0]−E[Y |D = 0, X = 0] < E[Y1|X = 0]−E[Y0|X = 0] = ATE(X = 0).

In this simple model, conditioning on university attendance would lead us to understate
the true treatment effect. Now that we understand the basic intuition, we’ll take a more
mathematical look at the problem of a bad control. The following lemma and discussion
are a special case of Wooldridge (2005).

Lemma 4.1. Let X be a binary RV and suppose that E(Yj) = E(Yj|D) for j = 0, 1. If
E(Yj|X,D) = E(Yj|X) for j = 0, 1 then at least one of the following must hold:

(i) X |= D

(ii) E(Yj|X) = E(Yj) for j = 0, 1

Proof of Lemma 4.1. Since Yj is mean independent of D for j = 0, 1 and X is binary,
the law of iterated expectations gives

E(Y1) = E(Y1|D) = EX|D [E(Y1|D,X)]

= E(Y1|D,X = 0)P(X = 0|D) +E(Y1|D,X = 1)P(X = 1|D)

4If you did not make it into the top 30% of the distribution of (K +A) in spite of receiving the extra
boost to K that comes from D = 1, then you must have had a low value of A.
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and similarly for Y0. Further imposing that (Y0, Y1) are mean independent of D given X

E(Y0) = E(Y0|X = 0)P(X = 0|D = d) +E(Y0|X = 1)P(X = 1|D = d) (4.3)

E(Y1) = E(Y1|X = 0)P(X = 0|D = d) +E(Y1|X = 1)P(X = 1|D = d). (4.4)

The left-hand sides of (4.3) and (4.4) do not depend on the value d that the treatment
D takes on. Thus, to avoid a contradiction between E(Yj|D) = E(Yj) and E(Yj|X,D) =

E(Yj|X), the RHS cannot depend on d either. There are only two ways that this is
possible. The first is if X |= D so that P(X = x|D = d) = P(X = x) and

E(Y0) = E(Y0|X = 0)P(X = 0) +E(Y0|X = 1)P(X = 1)

E(Y1) = E(Y1|X = 0)P(X = 0) +E(Y1|X = 1)P(X = 1).

If X and D are dependent, then the only way that the RHS (4.3) and (4.4) could not
involve d is if E(Y1|X = 0) = E(Y1|X = 1) = E(Y1) and similarly for Y0, so that

E(Y0|X = 0)P(X = 0|D = d) +E(Y0|X = 1)P(X = 1|D = d) = E(Y0)

E(Y1|X = 0)P(X = 0|D = d) +E(Y1|X = 1)P(X = 1|D = d) = E(Y1)

since P(X = 0|D = d) +P(X = 1|D = d) = 1 for any value of d.

Lemma 4.1 tells us that if treatment is randomly assigned, then any covariate X

that is both related to treatment and affects the average potential potential outcomes
is necessarily a bad control. Given that D is mean independent of (Y0, Y1), such an X

cannot satisfy E(Yj|X,D) = E(Yj|X), the selection on observables assumption. This
means that we cannot identify the ATE by conditioning on X and using, for example,
regression adjustment or propensity score weighting. In our example from above, college
attendance (X) was both affected by attending a bilingual high school (D) and in turn
affected wages. Given that D was randomly assigned, the lemma shows that college
attendance is a bad control in the wages and high-school experiment.

Lemma 4.1 does not say that conditioning on a covariate that is related to D and
Y is always bad. Indeed the whole point of this chapter is to try to eliminate selection
bias by finding covariates that are related to D and Y . The lemma concerns a setting
where we have already solved the selection problem by randomly assigning D. It tells us
when conditioning on X would introduce selection bias that was not there to begin with.
This may strike you as odd: why would we bother to condition on X if we already knew
that the treatment had been randomly assigned? There are two answers to this question.
First, it is fairly common in practice for researchers to condition on covariates when
analyzing experimental data, either to estimate conditional ATEs for people with different
characteristics or to reduce the variance of their overall ATE estimator by “projecting
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out” sources of noise in Y . Lemma 4.1 tells us that this is perfectly fine provided that
these covariates were measured before assigning the treatment: because D is randomly
assigned, we know that any pre-existing characteristics of individuals, e.g. sex or age, will
be independent of treatment and hence cannot be bad controls.

Second, the reasoning used in our proof of Lemma 4.1 also applies to settings in which
D is not randomly assigned. Suppose that we have a set of “good controls” W that satisfy
Assumption 4.1, i.e. (Y0, Y1) are mean independent of D given W . Now suppose that
we are considering adding an additional binary variable X to our set of controls. We
should only add X if (Y0, Y1) are mean independent of D given the full set of controls
(W , X). Suppose this is the case. Then, by iterated expectations and our two of mean
independence assumptions,

E(Y1|W ) = E(Y1|W , D) = EX|W ,D [E(Y1|W , D,X)]

= E(Y1|W , D,X = 0)P(X = 0|W , D) +E(Y1|W , D,X = 1)P(X = 1|W , D)

= E(Y1|W , X = 0)P(X = 0|W , D) +E(Y1|W , X = 1)P(X = 1|W , D)

and similarly for Y0, yielding

E(Y0|W ) = E(Y0|W , X = 0)P(X = 0|W , D) +E(Y0|W , X = 1)P(X = 1|W , D)

E(Y1|W ) = E(Y1|W , X = 0)P(X = 0|W , D) +E(Y1|W , X = 1)P(X = 1|W , D).

The left hand sides of these equations do not depend on D. By reasoning similar to that
used in the proof of Lemma 4.1, the only way that the right hand sides could not depend
on D is if either X |= D|W or E(Yj|W , X) = E(Yj|W ). If X is determined after D, it is
unlikely that the first of these conditions hold. If X satisfies the second condition, then
conditioning on it is completely irrelevant in any case: it will neither help us to identify
ATEs, conditional or unconditional, nor will it improve the precision of our estimates.
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Chapter 5

The Local Average Treatment
Effects (LATE) Model

In section 1.8 we showed that an OLS regression of Y on D does not in general identify
the ATE: selection bias is the norm rather than the exception in social science. One pos-
sible solution, considered in chapter 4 is to make the selection on observables assumption.
Under this assumption, conditioning on observed characteristics X suffices to break any
dependence between D and (Y0, Y1). Selection on observables, however, is a very strong
assumption. How likely is it that we truly observe all the factors that create dependence
between D and (Y0, Y1)? As an alternative to selection on observables, this chapter con-
siders the use of an instrumental variable Z to identify causal effects. For simplicity we
focus on the case where Z, like D, is binary. We first review the “textbook” homoge-
neous effects IV model before addressing our key question for this chapter: what does an
instrumental variable identify in a world of heterogeneous effects?

5.1 Instrumental Variables with Homogeneous Effects

Suppose that Y = α + βD + U , where (Y,D) are observed random variables, U is
an unobserved random variable, and (α, β) are unknown constants. Under standard
conditions, the OLS estimator for β converges in probability to

βOLS =
Cov(D,Y )

Var(D)
=

βCov(D,D) + Cov(D,U)

Var(D)
= β +

Cov(D,U)

Var(D)

which does not equal β unless Cov(D,U) = 0. Suppose we have an instrumental variable
Z such that Cov(Z,U) = 0 (exogeneity) and Cov(Z,D) 6= 0 (relevance). Then, under
standard conditions, the instrumental variables (IV) estimator of β converges to

βIV =
Cov(Z, Y )

Cov(Z,D)
=

βCov(Z,D) + Cov(Z,U)

Cov(Z,D)
= β +

Cov(Z,U)

Cov(Z,D)
= β.
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What do we make of Y = α + βD + U in light of our discussion of potential outcomes
from above? This is a homogeneous treatment effects model. In other words the
model (implicitly) assumes that the treatment effect is the same for everyone. We can
express this model in the potential outcomes notation from above as follows. To find Y0,
set D = 0; to find Y1, set D = 1. This gives

Y0 ≡ α + U, Y1 ≡ α + β + U =⇒ Y1 − Y0 = β

so the ATE equals the constant β. But what if the assumption of homogeneous treatment
effects is incorrect? Does IV still identify a meaningful causal quantity? To answer
this question, we will drop the assumption that Y = α + βD + U where (α, β) are
constants and study the behavior of the IV estimand βIV ≡ Cov(Z, Y )/Cov(Z,D)

under heterogeneous treatment effects.
When D and Z are both binary, as we will assume they are in these notes, the IV

estimand can be written in a simpler form. Applying Lemma 1.1 to the numerator and
denominator of βIV

βIV =
p(1− p) [E(Y |Z = 1)−E(Y |Z = 0)]

p(1− p) [E(D|Z = 1)−E(D|Z = 0)]
=
E(Y |Z = 1)−E(Y |Z = 0)

E(D|Z = 1)−E(D|Z = 0)
(5.1)

where p ≡ P(Z = 1). The rightmost fraction in (5.1) is often called the Wald estimand.
Substituting sample means for population expectations gives the Wald estimator, a
convenient shorthand for β̂IV in the binary-treatment/binary-instrument case.

5.2 Non-compliance and the Intent-to-Treat Effect

Loosely speaking, an instrument is a variable Z that only affects Y through its affect
on D. In the preceding section we assumed that Z was relevant, Cov(Z,D) 6= 0,
and exogenous, Cov(Z,U) = 0. These two assumptions sufficed to identify the ATE
under homogeneous treatment effects. Because it only involves D and Z, the relevance
assumption is unchanged in a heterogeneous effects model, as we will see below. In
contrast, the exogeneity assumption Cov(Z,U) = 0 explicitly involves the additive error
term U from the homogeneous effects model. We will need to find alternative assumptions
to take its place if we wish to allow different people to have different treatment effects.
Before we can state these assumptions, however, we need to develop some terminology
and definitions that are specific to the heterogeneous effects case.

While IV methods are routinely applied to observational datasets, the definitions
we need to introduce are easiest understood by considering an experimental example.
The influential “Moving to Opportunity” (MTO) intervention from the mid 1990s of-
fered vouchers to families living in high-poverty neighborhoods that would allow them
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to relocate to low-poverty areas. A number of influential recent papers in economics
have studied the causal effect of the MTO intervention, e.g. on labor market outcomes
later in life. Although vouchers were assigned at random, for obvious reasons families
could neither be compelled to move if they received one nor prevented from moving if
they did not. Nearly 50% of the families offered vouchers through the MOT interven-
tion chose to remain in their original neighborhoods while 20% of those not offered a
voucher nevertheless moved to a low-poverty neighborhood. This phenomenon is called
non-compliance: subjects in social experiments can only be offered treatment rather
than compelled to take it up.

Let Z = 1 for families who were offered a voucher and D = 1 for those that moved to
a low-poverty neighborhood. Non-compliance means that Z may not equal D. Crucially,
while Z was randomly assigned, D was not: families chose whether or not to move, and
those who did likely differed in many ways from those who did not. For this reason, a
näive comparison of E[Y |D = 1] against E[Y |D = 0] will be polluted by selection bias, as
detailed in section 1.8. But what about conditioning on Z rather than D? The so-called
intent-to-treat estimand does exactly this, regressing Y on Z rather than D:

ITT ≡ E[Y |Z = 1]−E[Y |Z = 0].

Notice that the ITT is precisely the same thing as the numerator of the Wald estimand.
Because Z was randomly assigned, the ITT identifies the ATE of Z on Y : the average
causal effect of being offered a voucher on labor market outcomes.1

There is nothing wrong with the ITT. It answers a perfectly well-defined causal ques-
tion and is immune to selection bias. At the same time, the intervention was called
moving to opportunity for a reason: we don’t expect that being offered a voucher, on its
own, could affect labor market outcomes for families that did not, in fact, relocate. In
other words, it is the causal effect of D that truly interests us, not the causal effect of
Z. Under perfect compliance, Z = D so the ITT equals the ATE. If everyone who is
offered a voucher moves, and everyone who is not offered a voucher stays put, then the
effect of being offered a voucher is the same as the effect of actually moving. By driving
a wedge between Z and D, however, non-compliance causes the ITT and ATE to differ.
Recall that 50% of families offered a voucher (Z = 1) chose not to move (D = 0). Since
Y = (1−D)Y0 +DY1, we have

E[Y |Z = 1] = ED|Z=1 [E(Y |Z = 1, D)]

= E [Y0|Z = 1, D = 0]P(D = 0|Z = 1) +E [Y1|Z = 1, D = 1]P(D = 1|Z = 1)

=
1

2
×E(Y0|Z = 1, D = 0) +

1

2
×E(Y1|Z = 1, D = 1).

1See section 2.3, changing the notation so that Z replaces D.

54



This calculation shows that E[Y |Z = 1] contains a mixture of Y0 and Y1 with mixing
weights that depend on the extent of non-compliance. In effect, families that choose
not to move despite being offered a voucher dilute E[Y |Z = 1] so that it averages over
the outcomes of both treated and untreated families. Non-compliance causes similar
challenges for interpreting E[Y |Z = 0]. Since 20% of families who were not offered a
voucher chose to relocate,

E[Y |Z = 0] = ED|Z=0 [E(Y |Z = 0, D)]

= E [Y0|Z = 0, D = 0]P(D = 0|Z = 0) +E [Y1|Z = 0, D = 1]P(D = 1|Z = 0)

=
4

5
×E(Y0|Z = 0, D = 0) +

1

5
×E(Y1|Z = 0, D = 1).

Again we obtain a mixture of Y0 and Y1 that depends on the extent of non-compliance.
None of these calculations in any way contradicts our earlier claim that the ITT identifies
the average causal effect of Z on Y . They merely show the challenges involved in trying
to relate this quantity to the causal effect of interest, that of D on Y .

5.3 Compliers, Defiers, and Friends

In the previous section we showed that E[Y |Z = 0] and E[Y |Z = 1] each contain a
mixture of Y0 and Y1, making it difficult to relate the causal effect of being offered
treatment, the ITT, to that of actually receiving it. But there is a second and more
subtle challenge lurking here. Notice that E(Y |Z = 1) involves E(Y0|Z = 1, D = 0)

while E(Y |Z = 0) involves E(Y0|Z = 0, D = 0). While these are both averages of Y0,
they average over different kinds of families. Families who did not choose to move despite
being offered a voucher (Z = 1, D = 0) are probably very different from those that didn’t
move but weren’t offered a voucher (Z = 0, D = 0).2 Perhaps the group with Z = 1

and D = 0 is much poorer, making it harder for them to move even with a voucher. Or
perhaps they are less ambitious, and less willing to take advantage of the opportunity
presented by moving to a new neighborhood. Whatever the reasons behind their choice
not to move, we would likely expect their values of Y0 to differ systematically from those
of other families. Similarly, E[Y |Z = 0] involves E[Y1|Z = 0, D = 1] while E[Y |Z = 1]

involves E[Y1|Z = 1, D = 1]. Both are averages of Y1 but, again, for different groups of
families. Those that chose to move despite not being offered a voucher (Z = 0, D = 1)
may be richer, making it easier for them to move. They might also be more ambitious
given their willingness to “move to opportunity” without being offered a voucher.

To make it easier to discuss these different types of families, and as a lead-in to our
derivations for IV under heterogeneous effects, we introduce the notion of compliance

2Remember that Z was randomly assigned, but D is something that families could choose.
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types.3 The idea is to consider every possible rule that a family could use to decide
whether or not to move, depending on whether they were offered a voucher. Mathemat-
ically, this involves listing every function that maps Z to D. Because both are binary,
there are four possibilities. We give each a name corresponding to the “type” (T ) of
family that would adopt it:

Never-taker: T = n ⇐⇒ D(Z) = 0

Always-taker: T = a ⇐⇒ D(Z) = 1

Complier: T = c ⇐⇒ D(Z) = Z

Defier: T = d ⇐⇒ D(Z) = (1− Z).

In the MTO example, never-takers are the families that would never choose leave their
current neighborhood, regardless of whether they are offered a voucher. Similarly, always-
takers are families that would always choose to move to a lower-poverty area, regardless
of whether they are offered a voucher. As their name suggests, compliers are the families
that comply with their treatment offer: they move when given a voucher and stay put
otherwise. Defiers are the most exotic of the four compliance types. These are families
with a decidedly contrarian streak: they will only move to a low-poverty neighborhood
when they are not offered a voucher.4

There is a crucial point about compliance types that is easy to miss: they are defined
relative to a particular instrumental variable Z. Consider three different instruments
intended to encourage families to move to low-poverty neighborhoods: Z1 is an offer to
provide help looking for a new apartment, Z2 is a voucher worth $500 per month towards
rent for families that move, and Z3 is title to a house, completely free of charge, in a
low-poverty area. Someone who is a never-taker for Z1 could easily be a complier for Z2,
and someone who is a never-taker for Z2 could easily be a complier for Z3. Our intuition
is that Z1 provides the weakest inducement to move while Z3 provides the strongest. This
point will be especially important below, where we will show that IV identifies the ATE
for compliers when treatment effects can vary across individuals (or families).

5.4 The Local Average Treatment Effects Model

Having defined the four compliance types—always-takers, never-takers, compliers, and
defiers—we can now state the assumptions that take the place of instrument exogeneity
when treatment effects may be heterogeneous. The first is unconfounded type.

3Much of the literature refers to these as the “LATE Principal Strata.” The meaning of LATE will
be clarified below, but principal stratum is exceedingly vague, so I prefer to avoid the term.

4Our definition of “defier” assumes that Z = 1 should make families more likely to move. If the
reverse is true, simply replace Z with Z̃ = 1− Z.
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Assumption 5.1 (Unconfounded Type). For all compliance types t ∈ {a, c, n, d}

P(T = t) = P(T = t|Z = 0) = P(T = t|Z = 1).

Assumption 5.1 says that knowing the value of a person’s instrumental variable tells
us nothing about her type. If Z is randomly assigned, as in an experiment like MTO
example, this assumption holds automatically: a person’s type can be viewed as a pre-
existing characteristic just like age, sex, or income. In examples where Z arises from
observational data, Assumption 5.1 is a substantive assumption that could in principle
fail to hold. The second assumption is that there are no defiers.

Assumption 5.2 (No Defiers). P(T = d) = 0.

Assumption 5.2 says that there are no defiers in the population: everyone is a never-
taker, a complier, or an always-taker. If we view Z as an inducement that lowers the cost
of taking up the treatment, this assumption entails that the instrument shifts everyone
in the same direction or not at all. In the MTO example, this requires that offering a
family a voucher cannot make them less likely to move. For this reason the no defiers
assumption is sometimes called monotonicity. Assumption 5.2 is natural in a model of
rational choice, particularly if Z is a straightforward cost shifter such as the rent voucher
from the MTO example. Nevertheless, it is still a restriction. Under the unconfounded
type and no-defiers assumptions we can calculate the fraction of each compliance type in
the population using the results of the following lemma.

Lemma 5.1. Under Assumptions 5.1 and 5.2,

P(D = 1|Z = 1) = P(T = a) +P(T = c)

P(D = 0|Z = 1) = P(T = n)

P(D = 1|Z = 0) = P(T = a)

P(D = 0|Z = 0) = P(T = c) +P(T = n)

Notice that Lemma 5.1 directly identifies the share of never-takers and always-takers
in the population: P(D = 0|Z = 1) equals P(T = n) while P(D = 1|Z = 0) equals
P(T = a). To obtain the share of compliers, we take differences:

P(T = c) = P(D = 1|Z = 1)−P(D = 1|Z = 0). (5.2)

Notice that the right-hand side of (5.2) is precisely the denominator of the Wald estimand
from (5.1): since D is binary, E(D|Z) = P(D = 1|Z). To keep us from getting bogged
down in book-keeping, I defer the proof of Lemma 5.1 to section 5.6. The intuition
behind the proof, however, is fairly straightforward. Consider P(D = 0|Z = 1). Because
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we have assumed that there are no defiers (Assumption 5.2), a family that is offered a
voucher (Z = 1) but doesn’t move (D = 0) is a never-taker. Since we have assumed
that the fraction of each type is the same among those who are offered a voucher and
those who are not (Assumption 5.1), P(D = 0|Z = 1) tells us the overall fraction of
never-takers in the population. The remaining equations follow by similar reasoning: see
section 5.6. The third and final assumption that replaces the more familiar instrument
invalidity assumption from section 5.1 is called mean exclusion.

Assumption 5.3 (Mean Exclusion). E [Yj|Z = z, T = t] = E [Yj|T = t] for all (j, z, t).

In words, Assumption 5.3 says that the average values of (Y0, Y1) for any type t of
family does not depend on whether they were offered a voucher. Mean exclusion does
not require that Y is unaffected by Z. Because Y = (1 − D)Y0 + DY1, the instrument
will necessarily affect Y if it affects D. What Assumption 5.3 entails is that Z has no
direct effect on Y : it may shift D but leaves Y0 and Y1 unchanged. In the MTO example,
this requires that merely being offered a voucher has no effect on labor market outcomes
for a family that does not choose to move. Similarly, it requires that not being offered a
voucher has no effect on labor market outcomes for a family that does choose to move.
Combining Assumptions 5.1, 5.2, and 5.3 we can derive a lemma that will ultimately
allow us to relate the ITT to the causal effect of D on Y .

Lemma 5.2. Under Assumptions 5.1, 5.2, and 5.3.

E [Y |D = 1, Z = 1] =
P(T = a)E [Y1|T = a] +P(T = c)E [Y1|T = c]

P(T = a) +P(T = c)

E [Y |D = 0, Z = 1] = E [Y0|T = n]

E [Y |D = 1, Z = 0] = E [Y1|T = a]

E [Y |D = 0, Z = 0] =
P(T = n)E [Y0|T = n] +P(T = c)E [Y0|T = c]

P(T = n) +P(T = c)

Lemma 5.2 relates the means of the observed outcome Y given D and Z to the means
of the potential outcomes (Y0, Y1) for different types of families. In the MTO intervention,
for example, the average value of Y for families that were not offered a voucher but moved
to a low-poverty neighborhood nonetheless, E[Y |D = 1, Z = 0], identifies the average
value of Y1 for always-takers. Similarly, the average value of Y for families that were
offered a voucher but chose not to move, E[Y |D = 0, Z = 1], identifies the average value
of Y0 for never-takers. So far we have used Assumptions 5.1, 5.2, and 5.3 to derive two
lemmas. Lemma 5.1 tells us something about the denominator of the Wald estimand. And
since E[Y |Z] = ED|Z [E(Y |D,Z)] by the law of iterated expectations, Lemma 5.2 tells
us something about the numerator of the Wald estimator, i.e. the ITT. Before combining
them, we require one futher assumption.
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Assumption 5.4 (Existence of Compliers). P(T = c) > 0

By (5.2), Assumption 5.4 is equivalent to P(D = 1|Z = 1) 6= P(D = 1|Z = 0)

under Assumptions 5.1 and 5.2. To put it another way, the lack of a first-stage re-
lationship between Z and D would indicate that there are no compliers in the pop-
ulation. We cannot carry out IV without compliers: notice that the Wald estima-
tor is undefined if E(D|Z = 1) = E(D|Z = 0). Because D is binary, Cov(Z,D) =

p(1− p) [E(D|Z = 1)−E(D|Z = 0)]. Thus, Assumption 5.4 is equivalent to the instru-
ment relevance condition in the textbook homogeneous effects IV case from section 5.1.
We are finally ready to answer our main question for the chapter: what does IV identify
in a world of heterogeneous effects?

Theorem 5.1. Under Assumptions 5.1–5.4,

E(Y |Z = 1)−E(Y |Z = 0)

E(D|Z = 1)−E(D|Z = 0)
= E [Y1 − Y0|T = c]

Proof of Theorem 5.1. To begin, consider the numerator of the Wald Estimand. By
the Law of Iterated Expectations,

E (Y |Z = z) = ED|Z=z [E (Y |D,Z = z)] = E(Y |D = 0, Z = z)P(D = 0|Z = z)

+E(Y |D = 1, Z = z)P(D = 1|Z = z).
(5.3)

Now that we have expressed E(Y |Z) in terms of E(Y |D,Z) and P(D|Z), we can sub-
stitute our results from Lemma 5.1 and Lemma 5.2 into (5.3) to relate the numerator of
the Wald Estimand to the average potential outcomes E(Yj|T = t) of the different types
and their prevalence P(T = t) in the population. In particular:

E(Y |Z = 1) = E(Y |D = 0, Z = 1)P(D = 0|Z = 1) +E(Y |D = 1, Z = 1)P(D = 1|Z = 1)

= P(T = n)E(Y0|T = n) + [P(T = a)E(Y1|T = a) +P(T = c)E(Y1|T = c)]

and similarly for Z = 0,

E(Y |Z = 0) = E(Y |D = 0, Z = 0)P(D = 0|Z = 0) +E(Y |D = 1, Z = 0)P(D = 1|Z = 0)

= [P(T = n)E(Y0|T = n) +P(T = c)E(Y0|T = c)] +P(T = a)E(Y1|T = a).

Taking the differences of these two expressions, we find that

E(Y |Z = 1)−E(Y |Z = 0) = P(T = c)E(Y1 − Y0|T = c) (5.4)

since E(Y1|T = c) − E(Y0|T = c) = E(Y1 − Y0|T = c) by the Linearity of Conditional
Expectation. Now consider the denominator of the Wald Estimand. Since D is binary,
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E(D|Z = z) = P(D = 1|Z = z). Thus, by Lemma 5.1 we obtain

E(D|Z = 1)−E(D|Z = 0) = P(D = 1|Z = 1)−P(D = 1|Z = 0) = P(T = c). (5.5)

Since P(T = c) 6= 0 we can divide (5.4) by (5.5), completing the proof.

Theorem 5.1 shows that IV does not in general identify the ATE in a heterogenous
treatment effects setting. Instead, it identifies the average treatment effect for compliers.
In the MTO intervention, for example, IV would identify the average causal effect of
moving to a low-poverty neighborhood for the kind of family that could be induced to
move by offering them a voucher. This average effect for compliers is typically called
the local average treatment effect or LATE for short. Accordingly, Theorem 5.1 is
sometimes called the LATE Theorem and Assumptions 5.1–5.4 the LATE assumptions.
We discuss the interpretation of LATE in section 5.5 below.

5.5 Who are the compliers? Why should we care?

As shown in section 5.4, IV does not identify the ATE in a world of heterogeneous treat-
ment effects. Instead it identifies the LATE: an average treatment effect for a particular
subset of individuals, namely the compliers. So who are these compliers, and why should
we care about them? The short answer is: we don’t know, and it is unclear whether we
should. The key point to recognize is this: IV came first, and LATE came second. No one
sat down and asked “how can I recover the average treatment effect for the compliers?”
Instead the question was “suppose I run IV in a world of heterogeneous effects. Is there
any way to give an interpretation to the result?” The answer, as we have seen, is yes
but the interpretation is somewhat strained for several reasons. First, we cannot point to
any individual in the sample and say “this is a complier.” A person with (Z = 1, D = 1)

could be a complier or an always-taker; a person with (Z = 0, D = 0) could be a complier
or a never-taker. Second, as discussed in section 5.5 above, compliance is only defined
relative to a particular instrumental variable. In the MTO intervention, families were
offered a rent voucher that could be used to move to a low-poverty area. The LATE is
specific not only to the fact that the IV was a rent voucher—as opposed, say, to an offer
of assistance searching for an apartment—but also to the precise amount of the voucher.
A $500 per month rent voucher, for example, identifies a different LATE from a $600 per
month rent voucher if there are any families that would choose to move when offered the
larger amount but not the smaller one.

While we cannot identify individual compliers, it is possible to say something about
the so-called compliant sub-population, i.e. the population of compliers. First, as
seen from (5.2), the denominator of the Wald estimator tells us the fraction of compliers
in the population. If this fraction is large, the fact that IV identifies a LATE rather than
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the ATE is less worrying: when nearly everyone is a complier, the two causal effects will
likely be quite similar. Second, we can estimate the average characteristics of compliers.
Suppose, for example, that we wanted to determine whether compliers are more likely
to be women. Let W be a dummy variable that equals one if a person is female, zero
otherwise. Then P(W = 1|T = c) is the share of women among compliers. By Bayes’
Theorem, we obtain

P(W = 1|T = c) =
P(T = c|W = 1)P(W = 1)

P(T = c)
=
P(T = c|W = 1)P(W = 1)

E(D|Z = 1)−E(D|Z = 0)
(5.6)

using P(T = c) = E(D|Z = 1) − E(D|Z = 0) from Lemma 5.1. Now, P(W = 1) is
simply the share of women in the population but what about P(T = c|W = 1)? By an
argument nearly identical to the proof of Lemma 5.1, only with additional conditioning
on W = 1, we can show that

P(T = c|W = 1) = E(D|Z = 1,W = 1)−E(D|Z = 0,W = 1). (5.7)

Combining (5.6) and (5.7)

P(W = 1|T = c) = P(W = 1)

[
E(D|Z = 1,W = 1)−E(D|Z = 0,W = 1)

E(D|Z = 1)−E(D|Z = 0)

]
.

Since all of the quantities on the right-hand-side of this equation are observable, even
though we cannot tell which women are compliers, we can nevertheless identify the share
of women among compliers.

5.6 LATE Appendix: Proofs

Proof of Lemma 5.1. By the Law of Total Probability

P(D = d|Z = z) =
∑

t∈{a,c,d,n}

P(D = d|Z = z, T = t)P(T = t|Z = z)

=
∑

t∈{a,c,n}

P(D = d|Z = z, T = t)P(T = t)

since P(T = t|Z = z) = P (T = t) by Assumption 5.1 and P(T = d) = 0 by Assump-
tion 5.2. The key to the rest of the argument is that D is completely determined by Z

and T : if I know that your offer is Z = z and and your type is T = t, then I know with
certainty what your take-up decision will be. It follows that P(D = d|Z = z, T = t) is
either zero or one, depending on the values of (d, z, t).

Suppose first that Z = 1 but D = 0. Because you did not take up treatment, you
cannot be an always-taker. Moreover, because D 6= Z you cannot be a complier. Hence
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P(D = 0|Z = 1, T = c) = P(D = 0|Z = 1, T = a) = 0. If you were a never-taker, then
given Z = 1 you would indeed have D = 0: P(D = 0|Z = 1, T = n) = 1. Therefore, we
see that:

P(D = 0|Z = 1) = 0×P(T = a) + 0×P(T = c) + 1×P(T = n)

= P(T = n).

Now suppose that Z = 0 but D = 1. Because you took up treatment, you cannot be
a never-taker. Moreover, because Z 6= D you cannot be a complier. As a result, we see
that P(D = 1|Z = 0, T = c) = P(D = 1|Z = 0, T = n) = 0. If you were an always-taker,
you would indeed have D = 1: P(D = 1|Z = 1, T = a) = 1. Hence,

P(D = 1|Z = 0) = 1×P(T = a) + 0×P(T = c) + 0×P(T = n)

= P(T = a).

Next suppose that Z = 1 and D = 1. Because you took treatment, we know that you
cannot be a never-taker: P(D = 1|Z = 1, T = n) = 0. You could, however, be a complier
or an always-taker: P(D = 1|Z = 1, T = c) = P(D = 1|Z = 1, T = a) = 1. Hence,

P(D = 1|Z = 1) = 1×P(T = a) + 1×P(T = c) + 0×P(T = n)

= P(T = a) +P(T = c).

Finally, suppose that Z = 0 and D = 0. Because you did not take up treatment,
you cannot be an always-taker: P(D = 0|Z = 0, T = a) = 0. You could, however, be
a never-taker or a complier: P(D = 0|Z = 0, T = n) = P(D = 0|Z = 0, T = c) = 1.
Hence,

P(D = 0|Z = 0) = 0×P(T = a) + 1×P(T = c) + 1×P(T = n)

= P(T = c) +P(T = n)

completing the proof.

Proof of Lemma 5.2. By the Law of Iterated Expectations,

E[Y |D = d, Z = z] = ET |(D=d,Z=z) [E (Y |D = d, Z = z, T )]

=
∑

t∈{a,c,n}

E (Y |D = d, Z = z, T = t)P(T = t|D = d, Z = z) (5.8)

since P(T = d) = 0 by Assumption 5.2. In the proof of Lemma 5.1 above, we examined
the probabilities P(D = d|Z = z, T = t) in detail, arguing that they must be either
zero or one, depending on whether the take-up and offer combination (D = d, Z = z)

62



is compatible with the type T = t. In contrast, the present argument involves P(T =

t|D = d, Z = z). Fortunately, the two probabilities are related by the conditional version
of Bayes’ Theorem. In particular, using the fact that P(T = t|Z = z) = P(T = t) by
Assumption 5.1, we have

P(T = t|D = d, Z = z) =
P(D = d|Z = z, T = t)P(T = t)

P(D = d|Z = z)
. (5.9)

While it may appear that we have made things more complicated rather than less, the
preceding equality is actually very useful: in Lemma 5.1 we have already shown that the
denominator is a sum of type probabilities P(T = t). Moreover, as argued above, the
first term in the numerator is either zero or one depending on the values of (d, t, z).

Before we can combine all of these ingredients, however, we first need to take a
closer look at the expectation E (Y |D = d, Z = z, T = t). Recall from (1.2) that Y =

DY1 + (1−D)Y0. Taking conditional expectations of this equality, we have

E [Y |D = 0, Z = z, T = t] = E [Y0|D = 0, Z = z, T = t]

E [Y |D = 1, Z = z, T = t] = E [Y1|D = 1, Z = z, T = t]

A key idea in our proof of Lemma 5.1 above was that, given the way we have defined T ,
knowledge of a person’s type t and her treatment offer z immediately implies her take-up
decision d. In other words, D is a function of Z and T . For this reason, conditioning on
D in addition to Z and T is redundant: a person’s take-up decision cannot provide us
with any further information given that we already know her treatment offer and type. It
follows that we can drop D from the conditioning set in the preceding pair of equalities,
yielding

E [Y |D = 0, Z = z, T = t] = E [Y0|Z = z, T = t]

E [Y |D = 1, Z = z, T = t] = E [Y1|Z = z, T = t] .

There is one more simplification that we can apply to the expressions for E [Y |D,Z, T ].
Assumption 5.3 states that the conditional mean of Y0 and Y1 does not depend on Z

after conditioning on T : in other words the average potential outcomes for any type of
individual (a, c, n) are unaffected by her treatment offer. Imposing this restriction, the
preceding equalities become

E [Y |D = 0, Z = z, T = t] = E [Y0|T = t] (5.10)

E [Y |D = 1, Z = z, T = t] = E [Y1|T = t] . (5.11)

The remainder of the argument, though admittedly somewhat tedious, is just algebra.
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For each pair of values (d, z) we first substitute either (5.10) or (5.11) into (5.8), depending
on whether D = 0 or D = 1. We then substitute Lemma 5.1 into (5.9), and the result
into (5.8).

Consider first E [Y |D = 0, Z = 1]. Recall from the proof of Lemma 5.1 above that
the probability P(D = 0|Z = 1, T = t) equals one for T = n and zero for all other
types T = t. (If you do not take when offered, you must be either a never-taker or
defier, but we have assumed that there are no defiers.) By Equation 5.9, this implies that
P(T = t|D = 0, Z = 1) equals zero for any T 6= n. Hence, substituting Equation 5.9 and
(5.10) into (5.8), we obtain

E [Y |D = 0, Z = 1] = E [Y0|T = n]
P(T = n)

P(D = 0|Z = 1)

but since P(D = 0|Z = 1) = P(T = n) by Lemma 5.1, the numerator and denominator
cancel, leaving us with E[Y |D = 0, Z = 1] = E[Y0|T = n]. Nearly identical reasoning for
the case in which (D = 1, Z = 0) gives E[Y |D = 1, Z = 0] = E[Y1|T = a], using the fact
that anyone who takes up treatment when not offered must be an always-taker, given
that we have assumed that there are no defiers.

Now consider E [Y |D = 1, Z = 1]. Recall from the proof of Lemma 5.1 above that
the probability P(D = 1|Z = 1, T = t) equals one for T = c and T = a but zero for
T = n. By Equation 5.9, this implies that P(T = n|D = 0, Z = 1) equals zero. Hence,
substituting Equation 5.9 and (5.10) into (5.8), we obtain

E [Y |D = 1, Z = 1] = E [Y1|T = a]
P(T = a)

P(D = 1|Z = 1)
+E [Y1|T = c]

P(T = c)

P(D = 1|Z = 1)
.

The desired result follows since P(D = 1|Z = 1) = P(T = a) +P(T = c) by Lemma 5.1.
A nearly identical argument gives the required expression for E[Y |D = 0, Z = 0], with
never-takers replacing always-takers.
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Chapter 6

Testing the LATE Assumptions

A common criticism of instrumental variables approaches is that they merely replace
one untestable assumption–selection on observables–with another, instrument exogeneity.
There’s something to this argument. On the one hand, it’s easy to find published papers
that use dubious instruments to produce even more dubious results. On the other hand,
all causal inference relies on assumptions. And as we will see in this chapter, it’s not
quite correct to say that instrument exogeneity is untestable. Unlike the textbook, just-
identified, homogeneous effects IV model, The LATE model introduced in chapter 5
does have testable implications. We can use them both to screen out particularly bad
instruments and to gain a deeper understanding of the LATE model.

6.1 Instrument Exogeneity in the Textbook IV Model

Recall the “textbook” homogeneous effects model from section 5.1: Y = α + βD + U

where Cov(D,U) may not be zero. In this model, the treatment effect β is homogeneous:
β = Y1 − Y0 is constant, so everyone has the same treatment effect. Given a single
instrument Z, the IV estimand is

βIV =
Cov(Z, Y )

Cov(Z,D)
=

βCov(Z,D) + Cov(Z,U)

Cov(Z,D)
= β +

Cov(Z,U)

Cov(Z,D)
.

In order for βIV to equal the treatment effect of interest, β, the instrument Z must be
exogenous: Cov(Z,U) = 0. In order for the IV estimand to exist in the first place, Z
must also be a relevant: Cov(Z,D) 6= 0. If Z is both relevant and exogenous, we say
that it is a valid instrument.

Since D and Z are observed, instrument relevance is testable. We can simply regress
D on Z and carry out an F-test for the significance of the regression. From the perspective
of identification, Cov(D,Z) can be as close to zero as we like. So long as it is not exactly
zero the IV estimand is well-defined. In practice however, IV estimation and inference will
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go haywire if the first stage relationship between D and Z is weak, |Cov(Z,D)| is small,
a problem called weak instruments. We will not discuss this issue further here, but
it is important for you to be aware of, regardless of whether your interests are primarily
theoretical or applied.

Unlike (Y,D,Z), the error term U is unobserved so we cannot estimate Cov(Z,U).
Wait a minute, you might say, couldn’t we use the IV residuals Ûi ≡ (Yi−Ȳ )−β̂IV(Di−D̄)

to “stand in” for U and check whether they are correlated with Z? Unfortunately this
approach can never tell us anything about Cov(Z,U). To see why, suppose that Z is in
fact an endogenous instrument, i.e. that Cov(Z,U) 6= 0. In this case the IV estimand is
still perfectly well-defined, it simply doesn’t equal β:

βIV =
Cov(Z, Y )

Cov(Z,D)
= β +

Cov(Z,U)

Cov(Z,D)
, αIV = E(Y )− βIVE(D).

Now, let V be the IV residual: V ≡ Y − αIV − βIVD. Note that V is only equal to U

if Z is a valid instrument, because this is the only way that we can have βIV = β and
αIV = α. Using our definition of V , we can calculate Cov(Z, V ) as follows:

Cov(Z, V ) = Cov(Z, Y − αIV − βIVD) = Cov(Z, Y )− βIV Cov(Z,D)

= Cov(Z, Y )− Cov(Z, Y )

Cov(Z,D)
Cov(Z,D) = 0.

In other words, Z is always perfectly uncorrelated with the IV residual V by construction,
regardless of whether Z is correlated with the structural error U .

Without further information, there is no way to test instrument exogeneity in this
model. So where might we obtain additional information? One possibility is to consider
multiple instruments, as described in the next section. Another is to incorporate prior
information about other features of the model. When presenting IV results, applied re-
searchers often discuss the likely direction of selection bias and the extent of measurement
error in their regressor of interest. By combining this information with the observed data,
it is sometimes possible to conclude that the proposed instrumental variable cannot be
exogenous, even in a just-identified, homogeneous linear model like the one described
above. See DiTraglia and García-Jimeno (2021) for details.

6.2 Multiple Instruments and Over-identification

You may recall from your earlier econometrics training that it is possible to test the joint
exogeneity of multiple instrumental variables in a linear, homogeneous effects model.1

This is called a test of over-identifying restrictions, and is a special case of the J-
1In case you’re rusty on the terminology: “just-identified” means that there are as many instrumental

variables as endogenous regressors; “over-identified” means that there are more.
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test from the theory of generalized method of moments (GMM) estimation. The basic
idea is as follows. Let Y = α + βD + U as above, but now suppose that we have two
relevant instruments Z1 and Z2, i.e. Cov(Z1, D) 6= 0 and Cov(Z2, D) 6= 0. Now define two
IV estimands: one that uses Z1 to instrument for D and another that uses Z2, namely

β
(1)
IV ≡ Cov(Z1, Y )

Cov(Z1, D)
= β +

Cov(Z1, U)

Cov(Z1, D)
, β

(2)
IV ≡ Cov(Z2, Y )

Cov(Z2, D)
= β +

Cov(Z2, U)

Cov(Z2, D)
.

Taking differences of the two estimands, we obtain

β
(1)
IV − β

(2)
IV =

Cov(Z1, U)

Cov(Z1, D)
− Cov(Z2, U)

Cov(Z2, D)
.

If both Z1 and Z2 are exogenous, then Cov(Z1, U) = Cov(Z2, U) = 0 implying that β(1)
IV =

β
(2)
IV . Therefore, if β(1)

IV and β
(2)
IV are not equal then at least one of the instruments (Z1, Z2)

must be endogenous. While it is formulated in a slightly different way, a test of over-
identifying restrictions exploits this basic intuition to evaluate the joint null hypothesis
that both instruments are valid: Cov(Z1, U) = Cov(Z2, U) = 0. This example concerns
two instruments in a model with a single endogenous regressor, but the same idea applies
whenever there are more instruments than endogenous regressors or, more generally, when
there are more moment conditions than parameters.

As we have seen, the basic idea behind a test of overidentifying restrictions is that
two different instruments should both identify the same parameter, namely β. If they
disagree, this indicates that one of our assumptions must be incorrect. The reasoning
from above relies crucially on the assumption of homogeneous effects: Y = α + βD + U

posits the same treatment effect β for everyone in the population. Unfortunately this
logic does not carry over to a LATE setting. In a world of heterogeneous treatment
effects, Theorem 5.1 shows that the Wald estimand recovers the average treatment effect
for compliers, the subset of people who people who only take treatment when offered.
Crucially, compliance is only defined relative to a particular instrument. If two researchers
study the same question using two different instruments, there is no reason to suppose
that their LATEs will coincide. For this reason, comparing LATEs across instruments
does not provide a test of the LATE assumptions.

Consider two researchers, Alice and Bob, studying the effect of quitting smoking
on birthweight. Each researcher recruits a random sample of subjects from the same
population—newly-pregnant British women between the ages of 18 and 30 who regularly
smoke cigarettes. Alice and Bob follow identical research protocols. In each study half of
the subjects are offered an inducement (Z = 1) intended to encourage quitting smoking,
while the other half are not (Z = 0). The researchers then record which mothers suc-
cessfully quit smoking (D = 1) and which do not (D = 0) along with the birthweight of
their babies (Y ). The only difference between the two studies is the choice of Z. Alice’s
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instrument is a counseling session that teaches the dangers of smoking during pregnancy.
Accordingly, Alice’s LATE is the effect of quitting smoking on birthweight for the sub-
population of mothers who can be induced to quit by attending a counseling session. In
contrast Bob’s instrument is an offer to pay £500 to those who successfully quit smoking.
His LATE is the effect of quitting smoking on birthweight for the sub-population of moth-
ers who can be induced to quit by offering to pay £500. Because these subpopulations
almost certainly differ, it will come as no surprise that the LATEs could as well.

6.3 We can sometimes reject the LATE model.

In the preceding section, we saw that the over-identifying restrictions test can’t help
us when treatment effects are heterogeneous. The LATE model has “extra degrees of
freedom” in that it allows (Y1 − Y0) to vary across individuals. This means that two
equally valid instruments could yield different IV estimands. Unlike the just-identified,
linear, homogeneous IV model from above, however, the LATE model from chapter 5
has testable implications beyond Cov(D,Z) 6= 0. Huber and Mellace (2015) show that
Assumptions 5.1–5.3 from chapter 5 imply four inequalities of the form

θ1 ≤ 0, θ2 ≤ 0, θ3 ≤ 0, θ4 ≤ 0 (6.1)

where θ ≡ (θ1, θ2, θ3, θ4) is a vector of parameters that we will define in a moment. The
key point for now is that θ can be directly calculated from observations of (Y,D,Z). The
inequalities from (6.1) provide a test of the LATE restrictions. If any of the elements
of θ is positive then we know that at least one of assumptions 5.1–5.3 must be false.
In practice, we would compare estimated parameters θ̂ with appropriate standard errors
to discern whether any observed violation of the inequalities is statistically significant.
While any violation of (6.1) constitutes a violation of the LATE assumptions, not all
violations of the LATE assumptions will lead to a violation of (6.1). As such, the testable
implications from Huber and Mellace (2015) are necessary but not sufficient for the
validity of the LATE model.

6.3.1 Describing the Inequalities

In this section we’ll define the parameters θ1, θ2, θ3, and θ4 introduced above and describe
the associated inequalities. In the next section we’ll show why they hold. The inequalities
from (6.1) are best considered in pairs. The first two, θ1 ≤ 0 and θ2 ≤ 0, arise from the
following lemma.
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Lemma 6.1. Let F11 be the conditional CDF of Y |(D = 1, Z = 1) and define

yq ≡ F−1
11 (q), y1−q ≡ F−1

11 (1− q), q ≡ P(D = 1|Z = 0)

P(D = 1|Z = 1)
.

Then, under Assumptions 5.1–5.3,

E(Y |D = 1, Z = 1, Y ≤ yq) ≤ E(Y |D = 1, Z = 0) ≤ E(Y |D = 1, Z = 1, Y ≥ y1−q).

Lemma 6.1 contains two inequalities, both of which involve expectations of Y condi-
tional on D = 1. By Lemma 5.2, E(Y |D = 1, Z = 0) = E(Y1|T = a) so we have

E(Y |D = 1, Z = 1, Y ≤ yq) ≤ E(Y1|T = a) ≤ E(Y |D = 1, Z = 1, Y ≥ y1−q). (6.2)

In other words, Lemma 6.1 provides upper and lower bounds for the average value of
Y1 among always-takers. The lower bound equals the mean of the bottom q × 100% of
the distribution of Y |(D = 1, Z = 1) and the upper bound equals the mean of the top
q× 100%. It’s natural to ask: why bother? After all, E(Y |D = 1, Z = 0) point identifies
E(Y1|T = a) based on the observed data (Y,D,Z). The crucial observation is that the
bounds from Lemma 6.1 rely on information that was not used to construct (5.1), the
Wald estimand. As such, they function like “overidentifying restrictions.” If the LATE
assumptions are correct, E(Y |D = 1, Z = 0) indeed identifies E(Y1|T = a) and hence
must lie within the bounds. If it does not, at least one of our assumptions must be false.
To express Lemma 6.1 in the form θ1 ≤ 0 and θ2 ≤ 0, subtract the right-hand side of
each from the left-hand side, defining

θ1 ≡ E(Y |D = 1, Z = 1, Y ≤ yq)−E(Y |D = 1, Z = 0)

θ2 ≡ E(Y |D = 1, Z = 0)−E(Y |D = 1, Z = 1, Y ≥ y1−q).

From these definitions we see that at most one of the bounds θ1 ≤ 0 and θ2 ≤ 0 can be
violated in any given example. If E(Y |D = 1, Z = 0) does not lie within the bounds from
Lemma 6.1, then it either exceeds the upper bound, in which case it satisfies the lower
bound, or it falls short of the lower bound, in which case it satisfies the upper bound.
The following lemma gives analogous bounds for E(Y |D = 0, Z = 1).

Lemma 6.2. Let F00 be the conditional CDF of Y |(D = 0, Z = 0) and define

yr ≡ F−1
00 (r), y1−r ≡ F−1

00 (1− r), r ≡ P(D = 0|Z = 1)

P(D = 0|Z = 0)
.

Then, under Assumptions 5.1–5.3,

E(Y |D = 0, Z = 0, Y ≤ yr) ≤ E(Y |D = 0, Z = 1) ≤ E(Y |D = 0, Z = 0, Y ≥ y1−r).
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Lemma 6.2 contains two inequalities, both of which involve expectations of Y condi-
tional on D = 0. By Lemma 5.2, E(Y |D = 0, Z = 0) = E(Y0|T = n) so we have

E(Y |D = 0, Z = 0, Y ≤ yr) ≤ E(Y0|T = n) ≤ E(Y |D = 0, Z = 0, Y ≥ y1−r). (6.3)

In other words, Lemma 6.1 provides upper and lower bounds for the average value of
Y0 among never-takers. The lower bound equals the mean of the bottom r × 100% of
the distribution of Y |(D = 1, Z = 1) and the upper bound equals the mean of the top
r × 100%. If the LATE assumptions are correct, E(Y |D = 0, Z = 1) indeed identifies
E(Y0|T = n) and hence must lie within the bounds. If it does not, at least one of our
assumptions must be false. We convert Lemma 6.1 into the pair of inequalities θ3 ≤ 0

and θ4 ≤ 0 by defining

θ3 ≡ E(Y |D = 0, Z = 0, Y ≤ yr)−E(Y |D = 0, Z = 1)

θ4 ≡ E(Y |D = 0, Z = 1)−E(Y |D = 0, Z = 0, Y ≥ y1−r).

At most one of the inequalities θ3 ≤ 0 and θ4 ≤ 0 can be violated in a given example.
For convenience, we collect Lemmas 6.1 and 6.2 in the following result.

Theorem 6.1. Under Assumptions 5.1–5.3,
θ1

θ2

θ3

θ4

 ≡


E(Y |D = 1, Z = 1, Y ≤ yq)−E(Y |D = 1, Z = 0)

E(Y |D = 1, Z = 0)−E(Y |D = 1, Z = 1, Y ≥ y1−q)

E(Y |D = 0, Z = 0, Y ≤ yr)−E(Y |D = 0, Z = 1)

E(Y |D = 0, Z = 1)−E(Y |D = 0, Z = 0, Y ≥ y1−r)

 ≤


0

0

0

0

 (6.4)

where yq, y1−q are as defined in Lemma 6.1 and yr, y1−r as defined in Lemma 6.2.

6.3.2 Deriving the Bounds

We’ll begin by deriving (6.2). The derivation of (6.3) is nearly identical, so we’ll only
discuss it briefly at the end of this section. By Lemma 5.1, the probability q defined in
Lemma 6.1 can be written as

q ≡ P(D = 1|Z = 0)

P(D = 1|Z = 1)
=

P(T = a)

P(T = a) +P(T = c)
. (6.5)

Thus, q equals the share of always takers among those with (D = 1, Z = 1) and (1− q)

equals the share of compliers in the same group. Using this notation we can re-write the
expression for E(Y |D = 1, Z = 1) from above as

E (Y |D = 1, Z = 1) = (1− q)E (Y1|T = c) + qE (Y1|T = a) . (6.6)
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Thus, Assumptions 5.1–5.3 imply that E(Y |D = 1, Z = 1) is a mixture of E(Y1|T = a)

and E(Y1|T = c) with mixing probability q. Notice that the left-hand side of (6.6)
conditions on Z = 1 while the right-hand side does not. This is because the average
value of Y1 for any compliance “type” is unaffected by Z, provided that Assumption 5.3
holds. In words: the instrument has no direct effect on the outcome. Again, anyone
with (D = 1, Z = 1) must either be an always-taker or a complier. If we knew which
individuals in this group were always-takers, we could directly test Assumption 5.3 by
comparing E(Y |Z = 1, T = a) against E(Y |D = 1, Z = 0). Alas we cannot tell whether
a given individual with (D = 1, Z = 1) is an always-taker or a complier. What we can
say, using the mixture idea from above, is that q × 100% of the people in this group are
always-takers and the rest are compliers.

Let’s pick up this idea and run with it. Define the shorthand

F (y) ≡ P(Y ≤ y|D = 1, Z = 1) = P(Y1 ≤ y|T ∈ {a, c}, Z = 1)

G(y) ≡ P(Y1 ≤ y|T = c, Z = 1)

H(y) ≡ P(Y1 ≤ y|T = a, Z = 1).

By the law of total probability and Assumptions 5.1–5.2, it follows that

F (y) = P(T = c|T ∈ {a, c}, Z = 1)G(y) +P(T = a|T ∈ {a, c}, Z = 1)H(y)

= P(T = a|T ∈ {a, c})G(y) +P(T = c|T ∈ {a, c})H(y)

=
P(T = c)

P(T ∈ {a, c})
G(y) +

P(T = a)

P(T ∈ {a, c})
H(y).

Substituting our definition of q from (6.5) gives

F = (1− q)G(y) + qH(y). (6.7)

What (6.6) tells us about average outcomes for compliers and always-takers, (6.7) tells
us about the corresponding distributions of Y1. While neither G nor H observed–both
depend on T , the unobserved compliance type–we know that they “mix together” in
proportions (1− q) and q to form the observed distribution F . Here is the crucial point:
while H is defined conditional on Z = 1, its mean must equal E(Y1|T = a) under
Assumption 5.3. Thus, our task is to find all possible values for the mean of H that are
consistent with (6.7), F , and q. The result will be (6.2).

It’s taken a fair amount of work to get to this point, but we’ve managed to reduce
our problem to a completely abstract probability puzzle: if F = (1 − q)G + qH where
q and F are known, what are all possible values for the mean of H? This is a question
that crops up in a variety of econometric problems that have nothing to do with testing
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the LATE assumptions.2 As such, it’s worth looking at the details. Solving (6.7),

H(y) =

(
1

q

)
F (y)−

(
1− q

q

)
G(y).

While q and F (y) are known, we have no information about G(y). But in order for it to
be a valid CDF, it must lie between zero and one. Substituting G(y) = 0 and G(y) = 1

gives the following bounds for H(y)

F (y)

q
− 1− q

q
≤ H(y) ≤ F (y)

q
.

Finally, since H(y) must itself lie between zero and one, we obtain

max

{
0,

F (y)

q
− 1− q

q

}
≡ H(y) ≤ H(y) ≤ H(y) ≡ min

{
1,

F (y)

q

}
. (6.8)

Notice that H and H are themselves CDFs. Both are non-decreasing, approach zero as
y → −∞, and approach one as y → ∞. What’s more, H first-order stochastically
dominates H which in turn first-order stochastically dominates H.3 It follows that∫

R

yH(dy)︸ ︷︷ ︸
µ

≤
∫
R

yH(dy)︸ ︷︷ ︸
µ

≤
∫
R

yH(dy)︸ ︷︷ ︸
µ

. (6.9)

In other words: the mean µ of H, a distribution we do not know, must lie between the
mean µ of H and the mean µ of H, two distributions that we do know! While I will not
prove this here, these are in fact the best possible bounds for the mean of H based on
the information provided.4

In fact, (6.9) is precisely the same thing as (6.2). To make this clearer, let’s make
a simplifying assumption: suppose that F is a continuous, strictly increasing CDF with
probability density function f . This will allow us to write (6.9) in a more evocative form
by working out the probability density functions that correspond to H and H. To do
this, we differentiate with respect to y while keeping track of the behavior of the min and
max functions. Consider first H(y). This function equals zero until F (y) exceeds (1− q);
thereafter it equals [F (y)− (1− q)]/q. Solving F (y) = (1− q) for y, we see that H(y) is
positive and strictly increasing for any y greater than F−1(1− q). Since

d

dy

[
F (y)− (1− q)

q

]
=

F ′(y)

q
=

f(y)

q

2See for example DiTraglia and Garcia-Jimeno (2019).
3Let X1 and X2 be random variables with CDFs F1 and F2. We say that X1 first-order stochastically

dominates X2 if F1(x) ≤ F2(x) for all x or equivalently if F−1
1 (x) ≥ F−1

2 (x) for all x. Intuitively: any
quantile of X1, e.g. the median, is at least as large as the corresponding quantile of X2.

4See Horowitz and Manski (1995) for more details.
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it follows that the density function h(y) corresponding to H(y) is

h(y) = 1
{
y > F−1(1− q)

} f(y)

q
.

Written this way, we see that h is simply f truncated to the interval [y1−q,∞) where
y1−q denotes the (1 − q) × 100 percentile of f . In other words, h is the density formed
by keeping only the top q × 100% of f and rescaling the result so it integrates to
one. Now, H(y) ≡ min {1, F (y)/q} equals F (y)/q up to the point at which F (y) = q; for
larger values of y it equals one. Hence, the density h(y) corresponding to H(y) is

h(y) = 1
{
y < F−1(q)

} f(y)

q
.

So we see that h is simply f truncated to the interval (−∞, yq], where yq denotes the
q × 100 percentile of f . In other words, h is the desnsity formed by keeping only
the bottom q × 100% of f and rescaling the result so it integrates to one. Finally,
re-expressing (6.9) in terms of densities rather than CDFs, we obtain

µ ≡
∫ F−1(q)

−∞

y

q
f(y) dy ≤ µ ≤

∫ ∞

F−1(1−q)

y

q
f(y) dy ≡ µ. (6.10)

Now it’s clear that µ and µ are precisely the lower and upper bounds from (6.2).
To make things more concrete, let’s look at an example. Figure 6.1 illustrates (6.10)

in an example where q = 0.4 and f is a mixture of normals. The middle panel shows the
density f with its bottom 40% shaded in red and top 40% shaded in blue. The top panel
depicts h, constructed by “cutting out” the bottom 40% of f and rescaling so that the
result integrates to one The mean of this distribution is µ = −2.69. The bottom panel
depicts h, constructed by “cutting out” the top 40% of f and rescaling analogously. The
mean of this distribution is µ = 1.4. These are our bounds for µ, the mean of H. From
the figure we see that, all else equal, the larger the value of q the tighter the bounds. For
q > 0.5, the red and blue shaded regions in the middle panel overlap. As q approaches
one, they eventually coincide.

We haven’t said a word about compliers or never-takers for nearly two pages! But in
fact there’s a simple and intuitive story behind everything we’ve just discussed. Recall
that that F was defined as the CDF of Y |(D = 1, Z = 1), H as the CDF of Y1|(T =

a, Z = 1), and q as the share of always-takers among those with (D = 1, Z = 1). In
the example from Figure 6.1, 40% of the people who make up f are always-takers. Since
we don’t know where they fall in the distribution, we consider the two most extreme
possibilities. At one extreme they could all be packed together in the bottom 40% of
f ; at the other, they could all be packed together in the top 40%. Accordingly, our
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h(y) = q−1f(y)1{y < F−1(q)}

µ = −2.69

q = 0.4
q = 0.4

f(y) = 0.7φ(y + 2) + 0.3φ(y − 2)

h̄(y) = q−1f(y)1{y > F−1(1− q)}

µ̄ = 1.4

Figure 6.1: A numerical example illustrating (6.10). The middle panel depicts the density f ,
a mixture of standard normals with means −2 and 2 and corresponding mixing probabilities
0.7 and 0.3. The density h is constructed from the bottom 40% of f (top panel, red) while h
is constructed form the top 40% of f (bottom panel, blue). Dashed lines indicate the means of
these truncated distributions.
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bounds are simply the average of the top and bottom 40% of f . The intuition and the
mathematics agree, as they should! The larger the value of q, the smaller the share of
compliers. All else equal, this yields tighter bounds at the cost of making the LATE a
less interesting parameter, since it applies to only a very small subset of the population.

A nearly identical argument can be applied to derive (6.3). Here we rely upon the
fact that Y |(D = 0, Z = 0) is a mixture of Y0 for compliers and never-takers while

r ≡ P(D = 0|Z = 1)

P(D = 0|Z = 0)
=

P(T = n)

P(T = n) +P(T = c)

is the share of never-takers among those with (D = 1, Z = 1), by Lemma 5.1. Adopting
the shorthand F (y) = P(Y ≤ y|D = 0, Z = 0), G(y) ≡ P(Y0 ≤ |T = c, Z = 0), and
H(y) ≡ P(Y0|T = n, Z = 0), the rest of the argument proceeds almost exactly as above.

6.3.3 Testing a Stronger Version of the LATE Model

The discussion from above follows Huber and Mellace (2015). Two closely-related papers
that propose methods for testing the LATE model are Kitagawa (2015) and Mourifié
and Wan (2017). The key distinction between these papers is the model that they test.
Whereas Huber and Mellace (2015) derive testable implications of precisely the same as-
sumptions that we used to identify the LATE in chapter 5, Kitagawa (2015) and Mourifié
and Wan (2017) test a model that strengthens Assumption 5.3 from conditional mean
independence to full independence.5 While full independence is more than we need to
point identify the LATE, it is difficult to think of an applied example in which mean
independence is plausible but full independence is not. The advantage of assuming full
independence is that it leads to additional testable implications of the LATE model, at
the cost of somewhat greater complexity in implementation and exposition.

5See chapter 2 for an explanation of the difference.

75



Chapter 7

Marginal Treatment Effects

7.1 The Generalized Roy Model

Suppose that we observe an outcome variable Y , a binary treatment D, an instrumental
variable Z, and vector of covariates X. Let (Y0, Y1) denote the potential outcomes, where

Y = (1−D)Y0 +DY1.

Now define

µd(X) = E[Yd|D = d,X], Ud = Yd −E[Yd|X], for d = 0, 1.

By construction E[Ud|X] = E[Yd|X]−E {E[Yd|X]} = 0. Thus we can write

Y0 = µ0(X) + U0

Y1 = µ1(X) + U1

Y = (1−D)Y0 +DY1

where E[U0|X] = E[U1|X] = 0. Thus far everything has been without loss of generality.
The Generalized Roy Model adds the following assumptions:

(i) D = 1 {ν(X,Z) > V } for some unknown function ν(·).

(ii) Z |= (Y0, Y1, V )|X

(iii) The distribution of V |X = x is continuous for any x.

This entails a monotonicity assumption: conditional on X, we can shift ν(X,Z) by
changing Z without affecting V . This is because Z is independent of “resistance to take-
up”, V , conditional on X and V does not enter the function ν(·). In words: for a given
shift in Z, two people with the same observed characteristics X will experience the same
shift in ν(·) regardless of whether they have a different resistance to treatment, V .
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It is convenient, and standard, to normalize V to be a uniform random variable. Let
Fx denote the conditional CDF of V |X = x. Then, by the probability integral transform
Ṽ ≡ Fx(V ) ∼ Uniform(0, 1). Thus, we have

P(D = 1|X = x, Z = z) = P [ν(x, z) > V |X = x, Z = z]

= P [Fx (ν(x, z)) > Fx(V ) |X = x, Z = z ]

= P

[
g(x, z) > Ṽ |X = x, Z = z

]
= P

[
g(x, z) > Ṽ |X = x

]
= g(x, z).

Where the second-to-last equality uses the fact that Ṽ is conditionally independent of Z
given X because it is simply a fixed function of V , and the final equality uses the fact
that Ṽ is by construction uniform given X = x. Thus, a model in which V is uniform
conditional on X = x and ν(·) is the propensity score is observationally equivalent to
a model in which V it has some other continuous distribution and ν(·) is an unknown
function. This means that we are free to assume V |X = x ∼ Uniform(0, 1) and, because
we have already assumed that Z |= V |X, it follows that V |(X = x, Z = z) is also uni-
form. Thus, without loss of generality, we can replace first and third assumptions of the
Generalized Roy Model to yield

(i) D = 1 {π(X,Z) > V }

(ii) Z |= (Y0, Y1, V )|X

(iii) V |(X = x, Z = z) ∼ Uniform(0, 1)

where π(x, z) ≡ E(D|X = x, Z = z) is the propensity score. This is the form of the
model that we will use below.

7.2 The Marginal Treatment Effects (MTE) Func-
tion

In the Generalized Roy Model from above, the marginal treatment effects (MTE) function
is defined by

MTE(p, x) ≡ E[Y1 − Y0|X = x, V = p] = µ1(x)− µ0(x) +E[U1 − U0|X = x, V = p].

In words, this is the average treatment effect for a person with observable characteristics
X = x and unobservable characteristics V = p. Since V can be thought of as “resistance
to treatment,” the MTE function tells us how treatment effects vary with unwillingness
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to take the treatment. By integrating the MTE function, we can obtain a wide variety of
causal effects, e.g. the ATE, the ToT, and the TuT. We can also construct policy-relevant
treatment effects (PRTEs).

7.3 MTE Lemmas

Notation: Unobservable Means

k0(p, x) ≡ E(U0|X = x, V = p)

k1(p, x) ≡ E(U1|X = x, V = p)

k(p, x) ≡ E(U1 − U0|X = x, V = p) = k1(p, x)− k0(p, x)

K0(p, x) ≡ E(U0|X = x, V ≥ p)

K1(p, x) ≡ E(U1|X = x, V < p)

K(p, x) ≡ pE(U1 − U0|X = x, V < p)

Lemma 7.1. K1(p, x) =

∫ p

0

1

p
k1(v, x) dv

Proof of Lemma 7.1. By iterated expectations,

K1(p, x) ≡ E(U1|X = x, V < p) = EV |(X=x,V <p) {E (U1|X = x, V < p, V )}

= EV |(X=x,V <p) {E (U1|X = x, V )}

=

∫ ∞

−∞
E(U1|X = x, V = v)f(v|V < p,X = x)dv

=

∫ ∞

−∞
k1(v, x)f(v|V < p,X = x)dv.

Now, by assumption V |(X,Z) ∼ Uniform(0, 1) and hence, by iterated expectations, V |X
is also uniform. It follows that

P(V ≤ v|V < p,X = x) =
P(V ≤ v ∩ V < p|X = x)

P(V < p|X = x)
=

v

p

for v ≤ p. The associated density is 1/p for 0 < v ≤ p, zero otherwise, and hence

K1(p, x) =

∫ ∞

−∞
k1(v, x)f(v|V < p,X = x)dv =

∫ p

0

k1(v, x)
1

p
dv.

Lemma 7.2. p

[
∂

∂p
K1(p, x)

]
= k1(p, x)−K1(p, x)
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Proof of Lemma 7.2. Differentiating Lemma 7.1, we obtain

∂

∂p
K1(p, x) =

∂

∂p

[
1

p

∫ p

0

k1(v, x)dv

]
=

∂

∂p

(
1

p

)∫ p

0

k1(v, x)dv +
1

p

∂

∂p

(∫ p

0

k1(v, x)dv

)
= − 1

p2

∫ p

0

k1(v, x)dv +
1

p
k1(p, x) =

1

p

[
k1(p, x)−

∫ p

0

k1(v, x)
1

p
dv

]
=

1

p
[k1(p, x)−K1(p, x)]

by the chain rule, the fundamental theorem of calculus, and the definition of K1. The
result follows by multiplying both sides by p.

Lemma 7.3. K0(p, x) =

∫ 1

p

1

1− p
k0(v, x) dv

Proof of Lemma 7.3. By iterated expectations,

K0(p, x) ≡ E(U0|X = x, V ≥ p) = EV |(X=x,V≥p) {E (U0|X = x, V ≥ p, V = v)}

= EV |(X=x,V≥p) {E (U0|X = x, V = v)}

=

∫ ∞

−∞
E(U0|X = x, V = v)f(v|V ≥ p,X = x)dv

=

∫ ∞

−∞
k0(v, x)f(v|V ≥ p,X = x)dv

Again, by assumption V |(X,Z) ∼ Uniform(0, 1) so V |X is also uniform by iterated
expectations and hence

P(V ≤ v|V ≥ p,X = x) =
P(V ≤ v ∩ V ≥ p|X = x)

P(V ≥ p|X = x)
=

v − p

1− p

for v ≥ p. The associated density is 1/(1− p) for p < v < 1, zero otherwise, and hence

K0(p, x) =

∫ ∞

−∞
k0(v, x)f(v|V ≥ p,X = x)dv =

∫ 1

p

k0(v, x)
1

1− p
dv.

Lemma 7.4. −(1− p)

[
∂

∂p
K0(p, x)

]
= k0(p, x)−K0(p, x)
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Proof. Differentiating Lemma 7.3, we obtain

∂

∂p
K0(p, x) =

∂

∂p

[
1

1− p

∫ 1

p

k0(v, x)dv

]
=

∂

∂p

(
1

1− p

)
·
∫ 1

p

k0(v, x)dv +
1

1− p
· ∂

∂p

(∫ 1

p

k0(v, x)dv

)
=

1

(1− p)2

∫ 1

p

k0(v, x)dv +
1

1− p
· ∂

∂p

(
−
∫ p

1

k0(v, x)dv

)
=

1

(1− p)2

∫ 1

p

k0(v, x)dv −
1

1− p
k0(p, x)

=
1

1− p

[∫ 1

p

k0(v, x)
1

1− p
dv − k0(p, x)

]
=

1

1− p
[K0(p, x)− k0(p, x)] .

The result follows by multiplying through by (1− p) and re-arranging.

Lemma 7.5. (1− p)K0(p, x) + pK1(p, x) = K(p, x) where

K(p, x) ≡ pE(U1−U0|V < p,X = x) =

∫ p

0

E(U1−U0|V = v,X = x) dv =

∫ p

0

k(v, x) dv.

Proof of Lemma 7.5. By construction E(U0|X = x) = 0. Thus, by iterated expecta-
tions and the definition of K0,

0 = E(U0|X = x) = E [E (U0|X = x,1 {V ≥ p})|X = x]

= E(U0|X = x, V ≥ p)P(V ≥ p|X = x) +E(U0|X = x, V < p)P(V < p|X = x)

= K0(p, x)P(V ≥ p|X = x) +E(U0|X = x, V < p)P(V < p|X = x).

But under our chosen normalization of the Generalized Roy Model, V |X ∼ Uniform(0, 1).
Therefore, P(V ≥ p|X = x) = 1− p and P(V < p|X = x) = p and we obtain

(1− p)K0(p, x) + pE(U0|X = x, V < p).

Re-arranging, (1− p)K0(p, x) = −pE(U0|X = x, V < p). Thus, by the definition of K1,

(1− p)K0(p, x) + pK1(p, x) = −pE(U0|X = x, V < p) + pE(U1|X = x, V < p)

= pE(U1 − U0|V < p,X = x)

≡ K(p, x).
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Now, by iterated expectations and the definition of k(p, x),

K(p, x) ≡ pE(U1 − U0|V < p,X = x)

= pEV |(V <p,X=x) [E(U1 − U0|V = v,X = x)]

= p

∫ ∞

−∞
f(v|V < p,X = x)E(U1 − U0|V = v,X = x) dv

= p

∫ p

0

1

p
E(U1 − U0|V = v,X = x) dv

=

∫ p

0

E(U1 − U0|V = v,X = x) dv =

∫ p

0

k(v, x) dv

since V |(V < p,X = x) is a Uniform(0, p) random variable.

Notation: Observable Means

m(p, x) ≡ E[Y |π(X,Z) = p,X = x]

m0(p, x) ≡ E[Y |π(X,Z) = p,X = x,D = 0]

m1(p, x) ≡ E[Y |π(X,Z) = p,X = x,D = 1]

Lemma 7.6. π(Z,X) |= (U0, U1)|(X,1A{V }) for any measurable set A.

Proof of Lemma 7.6. By assumption, Z |= (Y0, Y1, V )|X. By a corollary of the redun-
dancy and decomposition axioms, it follows that (Z,X) |= (Y0, Y1, V )|X.1 Since U1 ≡
Y1−µ1(X) and U0 ≡ Y0−µ0(X), it follows by decomposition that (Z,X) |= (U0, U1, V )|X.
Yet another application of the decomposition axiom gives π(Z,X) |= (U0, U1, V )|X. Fi-
nally, by weak union and decomposition π(Z,X) |= (U0, U1)|(X,1A{V }) as claimed.

Lemma 7.7.

m0(p, x) = µ0(x) +E(U0|X = x, V ≥ p) ≡ µ0(x) +K0(p, x)

m1(p, x) = µ1(x) +E(U1|X = x, V < p) ≡ µ1(x) +K1(p, x)

1See chapter 2 for details on the axioms of conditional independence and associated corollaries used
in this argument.
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Proof of Lemma 7.7. For m0(·), we have

m0(p, x) ≡ E[Y0|π(Z,X) = p,X = x,D = 0]

= E [µ0(X) + U0|π(Z,X) = p,X = x, V ≥ π(X,Z)]

= µ0(x) +E [U0|π(Z,X) = p,X = x, V ≥ p]

= µ0(x) +E [U0|X = x, V ≥ p]

= µ0(x) +K0(p, x).

by Lemma 7.6 and the definition of K0. Proceeding analogously for m1(·),

m1(p, x) ≡ E[Y1|π(Z,X) = p,X = x,D = 1]

= E[µ(X) + U1|π(Z,X) = p,X = x, V < π(Z,X)]

= E[µ(X) + U1|π(Z,X) = p,X = x, V < p]

= µ1(x) +E[U1|X = x, V < p]

= µ1(x) +K1(p, x).

Lemma 7.8. E[D|π(Z,X) = p,X] = p

Proof. Since V |(X,Z) ∼ Uniform(0, 1), we have P(V < v|X,Z) = v. Therefore, by
iterated expectations

E[D|π(Z,X) = p,X = x] = EZ|(π=p,X) {P [V < π(Z,X)|π(Z,X) = p,X, Z]}

= EZ|(π=p,X) {P [V < p|π(Z,X) = p,X, Z]}

= EZ|(π=p,X) {P [V < p|X,Z]} = E[p|π(Z,X) = p,X] = p

since π(Z,X) is known conditional on (Z,X).

Lemma 7.9.

m(p, x) = µ0(x) + p [µ1(x)− µ0(x)] + (1− p)K0(p, x) + pK1(p, x)

= µ0(x) + p [µ1(x)− µ0(x)] +K(p, x)
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Proof of Lemma 7.9. By iterated expectations and Lemma 7.8

m(p, x) ≡ E[Y |π(Z,X) = p,X = x] = E[(1−D)Y0 +DY1|π(Z,X) = p,X = x]

= E[Y0|π(Z,X) = p,X = x,D = 0]E[1−D|π(Z,X) = p,X = x]

+E[Y1|π(Z,X) = p,X = x,D = 1]E[D|π(Z,X) = p,X = x]

= (1− p) ·E[Y0|π(Z,X) = p,X = x,D = 0] + p ·E[Y1|π(Z,X) = p,X = x,D = 1]

= (1− p) ·m0(p, x) + p ·m1(p, x).

The result follows by substituting the expressions for m0 and m1 from Lemma 7.7, and
then applying Lemma 7.5.

7.4 Identifying the MTE Function

Proposition 7.1 (Local IV Approach). MTE(p, x) = ∂

∂p
m(p, x).

Proof of Proposition 7.1. Differentiating the expression for m from Lemma 7.9,

∂

∂p
m(p, x) =

∂

∂p
{µ0(x) + p [µ1(x)− µ0(x)] +K(p, x)}

= µ1(x)− µ0(x) +
∂

∂p
K(p, x)

= µ1(x)− µ0(x) +
∂

∂p

∫ p

0

E(U1 − U0|X = x, V = v) dv

= µ1(x)− µ0(x) +E(U1 − U0|X = x, V = p) ≡ MTE(p, x)

by the fundamental theorem of calculus.

Proposition 7.2 (Separate Estimation Approach).

MTE(p, x) = m1(p, x)−m0(p, x) + p
∂

∂p
m1(p, x) + (1− p)

∂

∂p
m0(p, x).

Proof of Proposition 7.2. Combining Lemma 7.4 and Lemma 7.2 gives

p
∂

∂p
m1(p, x) + (1− p)

∂

∂p
m0(p, x) = [k1(p, x)− k0(p, x)]− [K1(p, x)−K0(p, x)] .

And by Lemma 7.7,

m1(p, x)−m0(p, x) = [µ1(x)− µ0(x)] + [K1(p, x)−K0(p, x)] .
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Summing these two equalities yields

µ1(x)− µ0(x) + k1(p, x)− k0(p, x) = µ1(x)− µ0(x) + k(p, x) ≡ MTE(p, x).

7.5 Brinch, Mogstad & Wiswall (2017)

This approach is very flexible in the way it incorporates covariates, and more restrictive
in the way it models the unobservables. Conditional on X = x, the only variation in
π(Z,X) comes from Z. Thus, if Z is binary π(Z,X) can only take on two distinct values
at any given level of the covariates. This means that the regression functions m0(p, x),
and m1(p, x) can only be identified at two values of p for each value of x. This motivates
a linear specification for k0 and k1, namely

k0(p, x) ≡ E(U0|V = p,X = x) = c0(x) + α0(x)p

k1(p, x) ≡ E(U1|V = p,X = x) = c1(x) + α1(x)p.

By construction, however, E(U0|X) = E(U1|X) = 0. Hence, since V |X is uniform,

0 = E(Uj|X = x) = EV |X=x [E(Uj|V,X = x)] =

∫ ∞

−∞
E(Uj|V = v,X = x)f(v|X = x) dv

=

∫ 1

0

E(Uj|V = v,X = x) dv =

∫ 1

0

kj(v, x) dv =

∫ 1

0

[cj(x) + αj(x)v] dv

=

[
cj(x)v + αj(x)

v2

2

]∣∣∣∣1
0

= cj(x) +
αj(x)

2
.

In other words, cj(x) = −αj(x)/2. Imposing this restriction, the model becomes

kj(p, x) ≡ E(Uj|V = p, V = x) = −αj(x)

2
+ αj(x)p = αj(x)(p− 1/2).

Now we compute the implied functional forms of K0, K1 as follows. First, by Lemma 7.3,

K0(p, x) ≡
∫ 1

p

1

1− p
k1(v, p) dv =

1

1− p

∫ 1

p

α0(x)(v − 1/2) dv

=
α0(x)

1− p
·
(
v2

2
− v

2

)∣∣∣∣1
p

=
α0(x)

2(1− p)
· v(v − 1)|1p

=
α0(x)

2(1− p)
[0− p(p− 1)] =

α0(x)

2(1− p)
· p(1− p) = pα0(x)/2.
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Next, by Lemma 7.1,

K1(p, x) =
1

p

∫ p

0

k1(v, x) dv =
α1(x)

p

∫ p

0

(v − 1/2) dv =
α1(x)

p
·
(
v2

2
− v

2

)∣∣∣∣p
0

=
α1(x)

2p
· v(v − 1)|p0 =

α1(x)

2p
[p(p− 1)− 0] = (p− 1)α1(x)/2.

Therefore, the observable conditional mean functions m0 and m1 can be used to identify
µ0, µ1, α0, and α1 as follows:

m0(p, x) = µ0(x) +K0(p, x) = µ0(x) +
1

2
pα0(x)

m1(p, x) = µ1(x) +K1(p, x) = µ1(x) +
1

2
(p− 1)α1(x).

7.6 Assuming Separability

An alternative approach assumes that

k(p, x) ≡ E(U1 − U0|X = x, V = p) = E(U1 − U0|V = p).

This in turn implies that

K(p, x) =

∫ p

0

k(v, x) dv =

∫ p

0

k(v) dv ≡ K(p).

Under this restriction, changing X only affects the intercept of the MTE function, viewed
as a function of p. In this case the observable conditional mean function m becomes

m(p, x) = µ0(x) + p [µ1(x)− µ0(x)] +K(p).

In practice, it is common to restrict µ0 and µ1 further by supposing that each is a linear
function of covariates: E[Y0|X = x] = x′β0 and E[Y1|X = x] = x′β1. With this further
restriction, we obtain a partially linear model, namely

m(p, x) = x′β0 + x′(β1 − β0)p+K(p).
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Chapter 8

Regression Discontinuity

Selection bias arises when people are free to choose whether or not they are treated.
An idealized randomized controlled trial eliminates this bias by removing the element of
choice: subjects are compelled to take the treatment or to refrain from doing so. Yet
experiments are not the only situations in which people’s freedom to choose their own
treatment is restricted. “Naturally occurring” constraints on self-selection are common
and, under the right conditions, can provide a powerful tool for causal inference using
observational data. Regression discontinuity methods exploit the existence of an admin-
istrative or legal cutoff that either completely or partially determines whether a person is
treated. In the sharp regression discontinuity design, everyone on one side of the cutoff
is treated and everyone on the other side is not, so the treatment variable “jumps” from
zero to one at the cutoff. In a fuzzy regression discontinuity design, a person’s probability
of treatment jumps at the cutoff. Either way, the basic idea is to compare those who are
slightly above the cutoff to those who are slightly below. In the sharp design we compare
mean outcomes for data near the threshold; in the fuzzy design we calculate the Wald
estimate in the same region. This chapter draws mainly on Hahn et al. (2001). For a
detailed survey of regression discontinuity methods, see Lee and Lemieux (2010).

In the discussion below, we will use some notation that has not appeared in earlier
chapters. First, 1{A} denotes the indicator function of the event A. If A occurs, this
function equals one; otherwise it equals zero. Second, limx↓c f(x) and limx↑c f(x) denote
the one-sided limits of a function f “from above” and “from below,” respectively.
Some references call these the limits “from the right” and “from the left.” We will tacitly
assume that both one-sided limits exist, so that if f has a discontinuity at c, it is a
jump discontinuity, also known as a discontinuity of the first kind. This means that
limx↓c f(x) 6= limx↑c f(x).
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8.1 The Sharp Regression Discontinuity Design

The best way to understand the sharp regression discontinuity design, or sharp RD for
short, is with an example. The following is based on Sekhri (2020). Quite unlike the
situation in the US, the most prestigious colleges in India are public. Given the choice,
effectively everyone would choose to attend a public rather than a private institution. Ad-
missions to public colleges are based on a threshold rule: anyone whose senior secondary
school exam score exceeds the appropriate cutoff is admitted and anyone whose score
falls below this threshold is rejected. The cutoffs vary from year-to-year and subject-to-
subject, but crucially applicants do not know the cutoff and all applications are evaluated
blind. This situation is depicted in Figure 8.1. If your senior secondary school exam score
X exceeds the admissions cutoff c, then you attend a public college (D = 1); if it does
not, then you attend a less-prestigious private college (D = 0). In RD parlance, the
variable X that determines a person’s treatment status is called the running variable.

D

Xc

1

0

Figure 8.1: Treatments in the sharp regression discontinuity design. Anyone with X ≥ c is
treated (D = 1) and no one with X < c is treated (D = 0).

The key insight behind sharp RD is that students with exam scores just below the ad-
missions cutoff are effectively identical to those with scores just above the cutoff. Whether
you score 59.9% versus 60% on a exam is basically down to luck, but moving from just
below the cutoff to just above it causes your treatment to jump discontinuously from
zero to one. Hence, if we restrict our attention to students whose exam scores fall within
a small window around the cutoff, it’s as if some of them had been randomly assigned
to attend an elite public college (D = 1) while the rest had been randomly assigned to
attend a less-prestigious public college (D = 0). We formalize as follows.

Assumption 8.1 (Sharp RD Design). D = 1 {X ≥ c} where X is an observed covariate,
and c is a known threshold.

Assumption 8.1 states that treatment is completely determined by the running vari-
able X and a cutoff c that is known to the researcher. This is the situation depicted in
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Figure 8.1. Note that this implies selection on observables (Assumption 4.1). We have:

E[Yj|D,X] = E[Yj|1 {X ≥ c} , X] = E [Yj|X] , j = 0, 1

because 1 {X ≥ c} is a measurable function of X. So why can’t we just use the methods
from chapter 4 to identify the ATE? The basic idea from chapter 4 was to compare people
with the same value of X but different values of D. For this to be possible, we required
not just selection on observables, but overlap: Assumption 4.2. Under Assumption 8.1,
however, overlap fails completely: because anyone with X ≥ c is treated and no one with
X < c is treated, we cannot compare people with different values of D but the same value
of X. This is why we need a different approach.

Assumption 8.2 (Continuity of Conditional Means). E[Y0|X = x] and E[Y1|X = x] are
both continuous functions of x at the point x = c.

Assumption 8.2 formalizes the idea that students whose test scores fall in a sufficiently
small neighborhood around the admissions cutoff are “effectively identical.” Say that Y

is wage. We would expect that both Y0 and Y1 depend on X. Regardless of whether
you attend a public or private college, your wage is likely related to your secondary
school test score. Assumption 8.2 allows the potential outcomes to be related to X.
What it rules out is a “jump” in Y0 or Y1 as X moves from just below to just above
the cutoff c. How could such a jump occur? Suppose that it were possible for students
to “precisely manipulate” their test scores. Perhaps I know both my own likely score
and the cutoff. If I’m a highly-motivated person and my expected score falls just below
what I know to be the cutoff, then perhaps I might choose to work extremely hard in
the weeks before the exam to boost my score. Or if I’m a highly unscrupulous person,
perhaps I might try to cheat in some way. Either of these possibilities would lead to a
systematic difference between people with X just below c and those with X just above c.
If being highly-motivated, or highly unscrupulous, affects wages later in life, this would
lead to a violation of Assumption 8.2. In the context of Sekhri (2020), it is unlikely
that students can “precisely manipulate” their secondary school test scores in this way
because admissions thresholds vary both year-to-year and subject-to-subject. The fact
that diligence causes higher test scores as well as later-life outcomes does not constitute
a violation of Assumption 8.2 unless diligence jumps discontinuously at the admissions
cutoff. In effect, we require that D is the only thing that jumps at c.

Under Assumption 8.2, we can identify the conditional ATE at X = c by studying the
observed conditional mean function E[Y |X = x] close to the cutoff. Figure 8.2 gives the
visual intuition. Since anyone with X < c is untreated, E[Y |X = x] equals E[Y0|X = x]

for x < c. Similarly, since anyone with X ≥ c is treated, E[Y |X = x] equals E[Y1|X = x]

when x ≥ c. By assumption, neither E[Y0|X = x] nor E[Y1|X = c] has a discontinuity
at X = c. Hence, if E[Y |X = x] does have a discontinuity at this point, there must be a
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Y

Xc

E[Y |X]

E[Y0|X]

E[Y |X]

E[Y1|X]
τS

Figure 8.2: Outcomes in the sharp regression discontinuity design. For X < c we observe
E[Y |X] = E[Y0|X]; for X ≥ c we observe E[Y |X] = E[Y1|X]. The “jump” in E[Y |X] at c is
the conditional ATE when X = c, namely τS ≡ E[Y1 − Y0|X = c].

difference between E[Y1|X = c] and E[Y0|X = c]. This difference, τS, is the conditional
ATE at X = c. In the example from Sekhri (2020) discussed above, τS is the causal effect
of attending an elite public institution on later-life wages for a certain kind of person:
someone whose secondary school exam results are close to the admissions cutoff. This is
a well-defined causal effect, but it may differ from the overall average treatment effect.

Theorem 8.1 (Sharp Regression Discontinuity). Under Assumptions 8.1 and 8.2,

τS ≡ E[Y1 − Y0|X = c] = lim
x↓c
E[Y |X = x]− lim

x↑c
E[Y |X = x].

Proof of Theorem 8.1. By Assumption 8.1, we can re-write (1.2) as

Y = (1−D)Y0 +DY1 = 1 {X < c}Y0 + 1 {X ≥ c}Y1.

Taking conditional expectations of both sides, it follows that

E[Y |X = x] = E [1 {X < c}Y0 + 1 {X ≥ c}Y1|X = x]

= 1 {x < c}E[Y0|X = x] + 1 {x ≥ c}E[Y1|X = x].

Under Assumption 8.2, both E[Y0|X = x] and E[Y1|X = x] are continuous at c. Hence,

lim
x↑c
E[Y0|X = x] = lim

x↓c
E[Y0|X = x] = E[Y0|X = c]

lim
x↑c
E[Y1|X = x] = lim

x↓c
E[Y1|X = x] = E[Y1|X = c].
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Now, since limx↑c 1{x < c} = 1 while limx↑c 1{x ≥ c} = 0,

lim
x↑c
E[Y |X = x] = lim

x↑c
1 {x < c} lim

x↑c
E[Y0|X = x] + lim

x↑c
1 {x ≥ c} lim

x↑c
E[Y1|X = x]

= E[Y0|X = c].

Similarly, since limx↓c 1{x ≥ c} = 1 while limx↓c 1{x < c} = 0,

lim
x↓c
E[Y |X = x] = lim

x↓c
1 {x < c} lim

x↓c
E[Y0|X = x] + lim

x↓c
1 {x ≥ c} lim

x↓c
E[Y1|X = x]

= E[Y1|X = c].

The result follows by subtracting the equality for limx↑cE[Y |X = x] from that for
limx↓cE[Y |X = x].

8.2 The Fuzzy Regression Discontinuity Design

Sometimes an administrative or legal cutoff strongly influences who is treated without
completely determining D. Jacob and Lefgren (2004) provide an interesting example
studying the causal effect of two remedial education policies in the Chicago Public Schools:
summer school, requiring students to extend their school year through August, and grade
retention, requiring students to repeat a year of school. Between 1996 and 1997, a policy
was introduced to end the practice of “social promotion,” in which students are automat-
ically advanced to the next school grade with no regard to their academic performance.
The policy set achievement thresholds for third-grade, sixth-grade, and eighth-grade stu-
dents. For these students to advance to the next grade, they were required to score suf-
ficiently well on standardized tests of reading and mathematics. As written, the policy
stated that students who exceeded the threshold in June would automatically advance
to the next grade. Those who did not would be made to attend summer school and
retested in August. Any student who fell below the threshold in the August retest would
be required to repeat the previous grade.

So much for the intent of the policy. How was it actually administered in practice?
In fact, test scores did not perfectly determine which students were assigned to remedial
programs. Around 3% of students who fell below the June test threshold were given
waivers that exempted them from summer school while roughly 14% of students who
completed summer school but failed to exceed the required threshold in the August retest
were exempted from repeating a grade. Moreover, some students were held back a grade
despite exceeding the June admissions threshold. To accommodate examples like this one
in which Assumption 8.1 fails, the fuzzy RD design replaces it with the following.
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Assumption 8.3 (Fuzzy RD Design).

lim
x↓c
P(D = 1|X = x) 6= lim

x↑c
P(D = 1|X = x)

where X is an observed covariate, and c is a known threshold.

Assumption 8.3 requires a jump in the probability of treatment at the cutoff c. Since
D is binary, an equivalent and slightly more compact way of writing this assumption is

lim
x↓c
E[D|X = x] 6= lim

x↑c
E[D|X = x].

In the example of Jacob and Lefgren (2004), barely passing the August retest means that
you will almost certainly be advanced to the next grade while barely failing means that
you will very likely be held back. Thus Assumption 8.3 is satisfied.

In Jacob and Lefgren (2004), the probability of treatment falls when test scores X

exceed the cutoff c. For consistency with our treatment of sharp RD from above, how-
ever, the discussion below tacitly assumes that P(D = 1|X) jumps upwards at c. To
accommodate the remedial education example in this context, we could simply re-define
X and c. If S is a student’s test score, 100 is the maximum possible score, and 40 is the
cutoff, for example, we would set X = 100− S and c = 60.

With this in mind, the rough intuition behind fuzzy RD is as follows. Because X

does not completely determine D, some people with X ≥ c have D = 0 and some people
with X < c have D = 1. For this reason, both limx↓cE[Y |X = x] and limx↑cE[Y |X = x]

contain a mixture of Y0 and Y1, much like E[Y |Z = 1] and E[Y |Z = 0] in the ITT from
(5.2). The Wald estimand from (5.1) “magnifies” the ITT by dividing it by the IV first-
stage. Analogously, the fuzzy RD estimand τF divides the sharp RD estimand τS from
Theorem 8.1 by the equivalent fuzzy RD “first-stage,” in particular

τF ≡ limx↓cE[Y |X = x]− limx↑cE[Y |X = x]

limx↓cE[D|X = x]− limx↑cE[D|X = x]
. (8.1)

Assumption 8.3 is effectively the “IV relevance” condition: it ensures that the denomina-
tor of (8.1) does not equal zero. The question remains: what if any causal interpretation
can we give to τF ? The answer depends on exactly what we are willing to assume in
addition to Assumption 8.3. We consider two possibilities. In the first, we make a rela-
tively strong assumption under which τF equals the conditional ATE at X = c, namely
E[Y1 − Y0|X = c], just as in the sharp RD case. In the second, we make a weaker but
more plausible assumption under which τF is effectively a local average treatment effect.

Assumption 8.4. There is some ε > 0 such that for |x− c| < ε,

E[Y1 − Y0|D,X = x] = E[Y1 − Y0|X = x].
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Assumption 8.4 states that the treatment effect (Y1 − Y0) is mean-independent of D
conditional on X = x when x is sufficiently close to the threshold. This is very similar to
selection on observables (Assumption 4.1). The main difference is that Assumption 8.4
is only required for X in a small neighborhood of c while the selection on observables as-
sumption was supposed to hold for all covariate values. Under this condition, a relatively
straightforward argument shows that τF = τS, defined in Theorem 8.1.

Theorem 8.2. Under Assumptions 8.2–8.4, the fuzzy RD estimand τF from (8.1) satisfies
τF = E[Y1 − Y0|X = c].

Proof of Theorem 8.2. By (1.2), we have

E[Y |X] = E [Y0 +D(Y1 − Y0)|X] = E[Y0|X] +E [D(Y1 − Y0)|X] .

Moreover, for |x− c| < ε, Assumption 8.4 gives

E [D(Y1 − Y0)|X = x] = ED|X=x {DE [Y1 − Y0|X = x,D]} = ED|X=x {DE [Y1 − Y0|X = x]}

= E[D|X = x]E [Y1 − Y0|X = x]

by iterated expectations. Combining the two preceding equalities and taking the limit
from above, it follows that

lim
x↓c
E[Y |X = x] = lim

x↓c
E[Y0|X = x] + lim

x↓c
E[D|X = x] lim

x↓c
{E[Y1|X = x]−E[Y0|X = x]}

= E[Y0|X = c] + lim
x↓c
E[D|X = x]E[Y1 − Y0|X = c]

by Assumption 8.2. Similarly, taking the limit from below,

lim
x↑c
E[Y |X = x] = lim

x↑c
E[Y0|X = x] + lim

x↑c
E[D|X = x] lim

x↑c
{E[Y1|X = x]−E[Y0|X = x]}

= E[Y0|X = c] + lim
x↑c
E[D|X = x]E[Y1 − Y0|X = c].

The result follows by subtracting these expressions and solving for E[Y1−Y0|X = c].

Assumption 8.4 rules out selection on gains near the threshold: it requires that in-
dividuals do not choose their treatment based on knowledge of their treatment effect
(Y1 − Y0). In the example from Jacob and Lefgren (2004) this would require there to be
no relation between being granted an exemption from remedial education and the causal
effect of remedial education, given a student’s test score. This seems implausible. Indeed,
Jacob and Lefgren (2004) found that students who received waivers and exemptions were
systematically different in observable characteristics from those who did not. Giving τF

a meaningful causal interpretation while allowing for selection on gains is more compli-
cated. To do so, we view D as a deterministic function of x. For any possible value x that
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X could take on, D(x) tells us whether someone would take the treatment, D(x) = 1,
or not, D(x) = 0. Although somewhat more complicated, this idea is very similar to the
way that we viewed D as a deterministic function of a person’s treatment offer z when
defining the compliance types in section 5.5 above. A person for whom D(x) switches
from 0 to 1 as x crosses the threshold c is a fuzzy RD complier. In the remedial education
example, compliers are students who would receive remedial education if and only if their
test scores warrant it, according to policy set down by the Chicago Public Schools. Under
appropriate assumptions, τF turns out to identify the local average treatment effect of
remedial education for this type of student. In particularly, we impose the following.

Assumption 8.5 (No Defiers). There is some ε > 0 such that D(c− h) ≤ D(c+ h) for
all 0 < h < ε.

Assumption 8.6 (Exclusion Restriction). (Y1−Y0) and D(x) are jointly independent of
X near c.

Assumption 8.5 is analogous to Assumption 5.2 in that it rules out defiers: people
whose treatment status moves in the “wrong direction” as X crosses the threshold. In our
running example, defiers would be students who only receive remedial education when
their test scores disqualify them from doing so. Assumption 8.6 is effectively Assump-
tion 5.1 and Assumption 5.3 rolled into one. This condition is a bit tricky to interpret.
In essence it states that, provided that we are sufficiently close to the cutoff, both a
person’s compliance type, as determined by D(x), and her treatment effect (Y1 − Y0) are
independent of her test score X. Note that this assumption allows selection on gains:
there is no requirement that D(x) be independent of (Y0 − Y1). Using these conditions,
we obtain the following.

Theorem 8.3. Suppose that E[Y0|X = x] is a continuous function of x at x = c. Then,
under Assumptions 8.5 and 8.6, the fuzzy RD estimand τF from (8.1) satisfies

τF = lim
h↓0

E[Y1 − Y0|D(c+ h)−D(c− h) = 1].

Proof of Theorem 8.3. By (1.2),

E[Y |X] = E [Y0 +D(Y1 − Y0)|X] = E[Y0|X] +E [D(Y1 − Y0)|X]

and hence

lim
x↓c
E[Y |X = x] = lim

x↓c
E[Y0|X = x] + lim

x↓c
E[D(Y1 − Y0)|X = x]

lim
x↑c
E[Y |X = x] = lim

x↑c
E[Y0|X = x] + lim

x↑c
E[D(Y1 − Y0)|X = x].
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Since E[Y0|X = x] is continuous at c, its limit from the right at this point equals its limit
from the left. Thus, subtracting the two preceding equalities

lim
x↓c
E[Y |X = x]− lim

x↑c
E[Y |X = x] = lim

x↓c
E[D(Y1 − Y0)|X = x]− lim

x↑c
E[D(Y1 − Y0)|X = x]

= lim
h↓0

{E [D(Y1 − Y0)|X = c+ h]−E [D(Y1 − Y0)|X = c− h]} .

Now, for 0 < h < ε Assumption 8.6 gives

E[D(Y1 − Y0)|X = c+ h]−E[D(Y1 − Y0)|X = c− h]

= E [D(c+ h)(Y1 − Y0)|X = c+ h]−E [D(c− h)(Y1 − Y0)|X = c− h]

= E [D(c+ h)(Y1 − Y0)]−E [D(c− h)(Y1 − Y0)]

= E [{D(c+ h)−D(c− h)} (Y1 − Y0)]

= E [Y1 − Y0|D(c+ h)−D(c− h) = 1]P [D(c+ h)−D(c− h) = 1]

= E [Y1 − Y0|D(c+ h)−D(c− h) = 1]E [D(c+ h)−D(c− h)]

(8.2)

since [D(c+ h)−D(c− h)] ∈ {0, 1} by Assumption 8.5. Similarly,

E[D|X = c+ h]−E[D|X = c− h] = E[D(c+ h)|X = c+ h]−E[D(c− h)|X = c− h]

= E[D(c+ h)−D(c− h)].

The result follows by substituting the preceding into the final equality of (8.2), since

lim
x↓c
E[D|X = x]− lim

x↑c
E[D|X = x] = lim

h↓0
E[D(c+ h)−D(c− h)].

Like the assumptions under which it was proved, the result of Theorem 8.3 is some-
what difficult to interpret at first glance. What does it mean to condition on the event
{D(c+ h)−D(c− h) = 1} in the limit as h approaches zero from the right? Recall that
the individuals for whom D(x) changes from zero to one as x crosses the threshold are
precisely the fuzzy RD compliers. It follows that Theorem 8.3 identifies a causal effect for
this sub-group of individuals. For the compliers, the fuzzy RD is really a sharp RD: these
are precisely the individuals who take the treatment if and only if X ≥ c. Accordingly,
limh↓0E[Y1 − Y0|D(c + h) − D(c − h) = 1] represents the average treatment effect for
compliers at X = c.

94



Chapter 9

Difference-in-differences

Thus far we’ve focused exclusively on methods for causal inference that can be applied
to cross-section data, a large number of individuals observed at one point in time. Panel
data, repeated observations of the same individuals over time, open up a new range of
possibilities for learning cause-and-effect from observational data. In this chapter we’ll
examine one of them: the difference-in-differences (DiD) approach. When we only had
a single time period to worry about, we used subscripts we used subscripts to represent
potential outcomes: (Y0, Y1). In this chapter we have the added complication of different
time periods in addition to different potential outcomes, so we need to adopt a new
convention. Below we use subscripts to denote time periods and parentheses to denote
potential outcomes. Thus, Yt(d) is the potential outcome at time t when treatment status
equals d ∈ {0, 1}. Remember it like this Parentheses = Potential Outcomes.
Add example of organ donation in California to motivate the basic idea. Do this be-
fore providing any notation. It’s very intuitive.

9.1 Adding a Time Dimension

Adding a time dimension to our problem doesn’t introduce any mathematical complica-
tions but it does present some new conceptual hurdles. Before discussing DiD and causal
identification let’s begin by seeing how the problem has changed and making clear what
we hope to achieve.

To keep life simple, we’ll focus on a two period model. The outcome Yt is observed
for two time periods: t ∈ {Before,After}.1 Some individuals are treated between these
two time periods: D = 1. Others are untreated: D = 0. “Before” refers to the time
period before anyone has been treated, while “After” refers to the time period after some
individuals have received the treatment. Each individual has a pair of potential outcome

1Many references write these as Y0 and Y1. I use the “Before” and “After” convention to avoid
confusing time periods with potential outcomes and to make it clear that treatment takes place between
the time periods in which we observe outcomes.
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time series, namely
(
YBefore(0), YAfter(0)

)
and

(
YBefore(1), YAfter(1)

)
. If Alice is treated, she

experiences YBefore(1) followed by YAfter(1); if she is untreated, she experiences YBefore(0)

followed by YAfter(0). In other words,

YBefore = (1−D)YBefore(0) +DYBefore(1) (9.1)

YAfter = (1−D)YAfter(0) +DYAfter(1) (9.2)

Notice that the treatment indicator D lacks a time subscript. This is because the treat-
ment takes place between the periods “Before” and “After.” In our simple model no one
is treated in the first period, but some people are treated before the second period. As
such, YBefore(1) does not refer to the potential outcome if a person is treated in the first
time period. Instead, it refers to the potential outcome in the first period if a person is
eventually treated, i.e. treated between the two time periods.

That last sentence may strike you as needlessly complicated. Why on earth do we
need to distinguish between YBefore(0) and YBefore(1)? Or to put it another way: how can
a person’s outcome in the first period depend on a treatment that she can only obtain
after this period has ended? The answer to this question is anticipation: if I know that
I will be treated tomorrow, this may lead me to change my behavior today in ways that
affect today’s outcome. The fact that I am eventually treated could affect my potential
outcome before I actually receive the treatment. This phenomenon is sometimes called an
“Ashenfelter dip,” after Ashenfelter (1978) who found that “all of the trainee [treatment]
groups suffered unpredicted earnings declines in the year prior to training,” in a study
of the effects of a government training program.2 Figure 9.1 depicts this situation for
a hypothetical individual, Alice. Let Y be wage. In the figure, Alice experiences an
upward earnings trajectory when treated, the blue line from YBefore(1) to YAfter(1), and
a downward earnings trajectory when untreated, the red line from YBefore(0) to YAfter(0).
She also experiences an Ashenfelter dip, in that her pre-treatment earnings are lower if
she receives treatment than if she does not: YBefore(1) < YBefore(1).

Our goal is to learn the average effect of treatment on the treated (TOT) in the
second time period, namely:

TOT ≡ E[YAfter(1)− YAfter(0)|D = 1]. (9.3)

We focus on the second period because we’re not interested in learning the anticipation
effect of the treatment but rather the causal effect: we want to know its effect on the
future rather than its effect on the past! We focus on the treated sub-population, because
these are the only people for whom we can carry out a before-and-after comparison:

2Ashenfelter’s dip is great with tortilla chips. For more discussion of this phenomenon, but sadly no
recipe, see Heckman and Smith (1999).

96
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Figure 9.1: Potential time series for a particular individual in a two-period model, depicting
an Ashenfelter dip. The treatment effect of interest is ∆ ≡ YAfter(1)− YAfter(0).

we observe them once before they have received the treatment and again afterwards.
Returning to Figure 9.1, the quantity ∆ ≡ YAfter(1)− YBefore(0) is is Alice’s causal effect.
The TOT is the average of ∆ for individuals in the population who eventually receive
the treatment.

While adding a time dimension is extremely helpful, the fundamental problem of
causal inference remains: we can never observe both YAfter(1) and YAfter(0) for the
same person. In earlier chapters, we addressed this problem by using between-person
comparisons. The selection-on-observables approach, for example, constructs two groups
of people who are “comparable” in terms of observed covariates X: one that was treated
and one that was not. Similarly, the regression discontinuity approach compares people
who are just above a threshold, hence treated, to people who are just below, hence
untreated, in the hope that the arbitrariness of the cutoff itself makes the two groups
comparable. The new idea in this chapter is to use the time dimension to make within-
person comparisons. The following two sections discuss some simple assumptions under
which we can use this approach to identify the TOT.

9.2 The Before-and-After Design

Let’s make two very strong assumptions. First we’ll rule out Ashenfelter dips, by assuming
that there is no anticipation of the treatment. This means that Alice’s potential earnings
in the first period are the same regardless of whether she eventually receives the treatment.
Second we’ll assume that there’s no trend in untreated potential outcomes: the path from
YBefore(0) to YAfter(0) is flat. This means that Alice will have the same earnings in period
two as she did in period one if she does not receive the treatment. Figure 9.2 modifies our
earlier diagram to incorporate these assumptions, producing a neat little right triangle
with vertices YBefore(1), YAfter(1), and YAfter(0).

This little triangle turns out to solve all of our problems. While we can’t observe
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Figure 9.2: Potential time series for a particular individual in a two-period model in which
the assumptions of the Before-and-after design are satisfied. The treatment effect of interest is
∆ ≡ YAfter(1)− YAfter(0).

YAfter(0) and YAfter(1) for the same person, we can observe YAfter(1) and YBefore(1) for
someone who receives the treatment. These are the two endpoints of the blue line in the
figure. But since YBefore(1) equals YBefore(0) which in turn equals YAfter(0) we see that
∆ = YAfter(1) − YBefore(1). And since these are precisely the outcomes that we observe
for someone with D = 1, it follows that E[YAfter − YBefore|D = 1] = TOT. This is
the before-and-after design, a within-person comparison of observed outcomes for the
treated sub-population: after minus before. And while it makes the pictures easier to
read, we don’t actually need YAfter(0), YBefore(0), and YBefore(1) to be equal. We merely
need them to be equal on average. Assumptions 9.1 and 9.2 make this precise; and
Theorem 9.1 shows what these assumptions buy us.

Assumption 9.1 (No Anticipation). E [YBefore(1)− YBefore(0)|D = 1] = 0.

Assumption 9.2 (No Trend). E [YAfter(0)− YBefore(0)|D = 1] = 0.

Theorem 9.1. Under Assumption 9.1 and Assumption 9.2, the before-and-after estimand
identifies the TOT:

E[YAfter − YBefore|D = 1] = E [YAfter(1)− YAfter(0)|D = 1] .

Proof. Taking the difference of average observed outcomes for the treated gives

BA ≡ E[YAfter − YBefore|D = 1] = E[YAfter(1)|D = 1]−E[YBefore(1)|D = 1].

But since

E[YBefore(1)|D = 1] = E[YBefore(0)|D = 1] = E[YAfter(0)|D = 1]
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by Assumptions 9.1 and 9.2, we obtain

BA = E[YBefore(1)|D = 1]−E[YAfter(0)|D = 1] = TOT.

The assumptions required for the before-and-after design to identify the TOT are
strong, especially Assumption 9.2. While there are some situations where the “no trends”
assumption makes sense, e.g. over a very short time horizon and for a process that follows
a random walk, there are many others where it doesn’t. Would we really expect Alice’s
earnings to be the same on average in period two as in period one if she doesn’t received
the treatment? A year from now the economy may be in a recession. And if Alice spent
that year employed, in one year’s time she has an extra year of work experience. Here is
a useful way to think about the before-and-after design: it provides sufficient conditions
for a purely within-person comparison to identify the causal effect we hope to learn.
If we want to weaken these conditions, we need something more than a within-person
comparison.

9.3 The Difference-in-Differences Design

The difference-in-differences design builds on the idea of within-person comparisons intro-
duced in the before-and-after design, but combines this with a between-person comparison
similar to that used in earlier chapters. We continue to rule out anticipation effects, As-
sumption 9.1. But rather than assuming that there is no trend in the untreated potential
outcomes, Assumption 9.2, we instead assume that trend that does exist is the same for
the treated and untreated populations. In this way, the untreated population serves as a
control group for the trend.

Figure 9.3 gives the intuition. The treatment effect is ∆ ≡ YAfter(1) − YAfter(0) but
we can’t observe the two potential outcomes needed to compute this quantity for the
same person. For the treated we observe YAfter(1) and YBefore(1), allowing us to calculate
∆1 ≡ YAfter(1)−YAfter(0). This is precisely the within-person comparison that we used in
the before-and-after design. But since YAfter(0) 6= YBefore(0), we see that ∆1 6= ∆. Here’s
where the between person comparison comes in. For an untreated person, we observe
YAfter(0) and YBefore(0), allowing us to calculate ∆0 ≡ YAfter(0) − YBefore(0). This is the
trend in untreated potential outcomes, the quantity that Assumption 9.2 assumed was
equal to zero. In Figure 9.3 it clearly does not equal zero. But suppose that this trend
were the same for treated and untreated people. Then we could use the value of ∆0

computed from the untreated as a “stand-in” for the value of ∆0 for the treated. And
since YBefore(1) = YBefore(0), Assumption 9.1, ∆ = ∆1 −∆0.

So as its name suggests, the DiD approach is based on taking double differences. First
we compute the before-and-after average of Y for the treated and untreated individuals

99



Yt(d)

t
Before AfterTreatment Date

∆0

∆1

YBefore(0)

YAfter(0)

YAfter(1)

YBefore(1)

∆

Figure 9.3: Schematic of the difference-in-differences design. The treatment effect of interest
is ∆ ≡ YAfter(1) − YAfter(0). We observe ∆0 = YAfter(0) − YBefore(0) for the untreated and
∆1 = YAfter(1) − YBefore(1) for the treated. Since YBefore(1) = YBefore(0), no anticipation,
∆ = ∆1 −∆0. The parallel trends assumption implies that ∆0 is the same on average for the
treated and untreated.

in our sample: E[YAfter − YBefore|D = 1] and E[YAfter − YBefore|D = 0]. The DiD estimand
equals the difference of these differences, namely

E[YAfter − YBefore|D = 1]−E[YAfter − YBefore|D = 0].

For this approach to identify the TOT, we need two assumptions. First is Assumption 9.1,
described above. Second is a new assumption called parallel trends.

Assumption 9.3 (Parallel Trends).

E [YAfter(0)− YBefore(0)|D = 1] = E [YAfter(0)− YBefore(0)|D = 0]

Notice that Assumption 9.3 doesn’t require that the trend in untreated potential
outcomes is identical across treated and untreated individuals, merely that it’s the same
on average. This assumption both allows and restricts selection on unobservables. If time-
invariant unobservables drive selection into treatment, Assumption 9.3 holds. What the
parallel trends assumption rules out is selection based on time-varying unobservables, aka
“transitory shocks.”

Theorem 9.2. Under Assumption 9.3 and Assumption 9.1, the difference-in-differences
estimand identifies the TOT:

E[YAfter − YBefore|D = 1]−E[YAfter − YBefore|D = 0] = E [YAfter(1)− YAfter(0)|D = 1]

In Figure 9.1, ∆ ≡ YAfter(1) − YAfter(0) so DiD identifies the average value of ∆ over
the subpopulation of individuals who choose to take the treatment.
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Proof of Theorem 9.2. Let θ denote the DiD estimand. By definition,

θ ≡ E[YAfter − YBefore|D = 1]−E[YAfter − YBefore|D = 0] (9.4)

and by (9.2),

E[YAfter − YBefore|D = 1] = E[YAfter(1)− YBefore(1)|D = 1] (9.5)

E[YAfter − YBefore|D = 0] = E[YAfter(0)− YBefore(0)|D = 0]. (9.6)

Now, by Assumption 9.1

E[YBefore(1)|D = 1] = E[YBefore(0)|D = 1].

Substituting this equality into (9.5), it follows that

E[YAfter − YBefore|D = 1] = E[YAfter(1)− YBefore(0)|D = 1]. (9.7)

Therefore, substituting (9.6) and (9.7) into (9.4), we obtain

θ = E[YAfter(1)− YBefore(0)|D = 1]−E[YAfter(0)− YBefore(0)|D = 0]

= E[YAfter(1)− YBefore(0)|D = 1]−E[YAfter(0)− YBefore(0)|D = 1]

= E[YAfter(1)− YAfter(0)|D = 1]

where the second equality follows from Assumption 9.3.

9.4 A Regression Interpretation of DiD

In our simple two-period model, computing the DiD estimator is easy. Simply replace
population expectations with sample means and take differences:

D̂iD =
(
ȲAfter, Treated − ȲBefore, Treated

)
−
(
ȲAfter, Untreated − ȲBefore, Untreated

)
.

An equivalent way of obtaining the same result is by running a linear regression of the
observed outcome on a treatment dummy Di a time dummy Aftert = 1(t = After) and
their interaction, namely

Yit = α + βDi + γAftert + δ (Di × Aftert) + Uit, t ∈ {Before,After}.

The coefficient on the interaction, δ, is the DiD estimand. This approach has several
advantages. First it simplifies the process of computing standard errors: we simply
obtain them from our usual regression output, possibly adjusting for heteroskedasticity
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or clustering. Second, it allows us to introduce control regressors. Suppose an observed,
time-varying covariate Xit is responsible for a violation of the parallel trends assumption:
Xit affects Yit and is correlated with treatment. By including Xit in our regression, e.g.

Yit = α + βDi + γAftert + δ (Di × Aftert) +X ′
itθ + Uit.

we may be able to salvage the DiD approach in a situation where the parallel trends
assumption does not hold unconditionally.

9.5 What if the treatment is anticipated?

The crucial assumption for DiD is parallel trends: Assumption 9.3. But, as in the
before-and-after design, we also assumed that there is no anticipation of the treatment,
Assumption 9.1. What happens if we relax this assumption? To find out, we’ll first define
an additional causal effect: the anticipation effect for the treated (AET)

AET ≡ E[YBefore(1)− YBefore(0)|D = 1].

The AET quantifies the effect of future treatment on current outcomes. For example,
if a criminal learns that harsher sentencing regimes will be put in place next year and
decides to carry out a robbery now in response to this policy change, the AET would pick
this up. As shown in the following two results, relaxing the no anticipation assumption
changes the causal effect identified by the DiD and BA designs. Rather than identifying
the TOT, they identify the difference TOT − AET. Depending on the application, this
may or may not be an interesting quantity but it is at least a meaningful one: the “future
effect” of treatment net of any anticipated effect in the present period.

Theorem 9.3. Under Assumption 9.2 E[YAfter − YBefore|D = 1] = TOT − AET.

Proof. By the definition of the before-and-after estimand and (9.2),

BA ≡ E[YAfter − YBefore|D = 1] = E[YAfter(1)− YBefore(1)|D = 1].

But by Assumption 9.2, E[YAfter(0)− YBefore(0)|D = 1] = 0. Therefore,

BA = E[YAfter(1)− YBefore(1)|D = 1]− 0

= E[YAfter(1)− YBefore(1)|D = 1]−E[YAfter(0)− YBefore(0)|D = 1]

= E[YAfter(1)− YAfter(0)|D = 1]−E[YBefore(1)− YBefore(0)|D = 1]

= TOT − AET.

Theorem 9.4. Under Assumption 9.3, the difference-in-differences estimand identifies
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the difference of the TOT and AET:

E[YAfter − YBefore|D = 1]−E[YAfter − YBefore|D = 0] = TOT − AET.

Proof. By the definition of the DiD estimand and (9.2),

DiD ≡ E[YAfter − YBefore|D = 1]−E[YAfter − YBefore|D = 0]

= E[YAfter(1)− YBefore(1)|D = 1]−E[YAfter(0)− YBefore(0)|D = 0].

But by Assumption 9.3,

E[YAfter(0)− YBefore(0)|D = 0] = E[YAfter(0)− YBefore(0)|D = 1].

Substituting this in the expression for DiD, we obtain

DiD = E[YAfter(1)− YBefore(1)|D = 1]−E[YAfter(0)− YBefore(0)|D = 1]

= E[YAfter(1)− YAfter(0)|D = 1]−E[YBefore(1)− YBefore(0)|D = 1]

= TOT − AE.

9.6 What if the treatment is randomly assigned?

Above we used the DiD design to learn the TOT effect of D from observational data. In
this section we’ll take a completely different tack, and discuss why the DiD approach can
also be helpful in an experimental setting. Suppose that a group of high school students
takes a practice SAT test. After observing their scores on the first test (YBefore), we
randomly assign some of the students to receive intensive SAT coaching (D = 1). Finally
we observe a second practice SAT test for all of the students (YAfter). Because D was
randomly assigned, we have

D |= {YBefore(0), YBefore(1), YAfter(0), YAfter(1)}.

And because this random assignment took place after we measured YBefore, there’s no
way that changing D could possibly affect scores on the first test. This means that
YBefore(0) = YBefore(1) for all students in the experiment, an even stronger version of
Assumption 9.1 (no anticipation). We only need to use potential outcomes notation for
variables that could be affected by changing a person’s treatment status. Since there’s
no distinction between YBefore(0) and YBefore(1) in this experiment, we will simply write
YBefore for both in the rest of this section, in effect treating it as a pre-treatment covariate.
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Using this notation, the independence condition from above simplifies to

D |= {YBefore, YAfter(0), YAfter(1)} .

Now, by the decomposition property, D |= {YAfter(0), YAfter(1)}, so a simple comparison of
average outcomes in the second period identifies the ATE:

E[YAfter|D = 1]−E[YAfter|D = 0] = E[YAfter(1)|D = 1]−E[YAfter(0)|D = 0]

= E[YAfter(1)− YAfter(0)] ≡ ATE.

In other words, we can ignore the first test score, YBefore, and simply compute the difference
of mean scores between the treated and control groups on the second test to learn the
causal effect of coaching. I’ll refer to this as the “single difference” (SiD) approach.

At first glance it seems like there’s no role for DiD in this experiment. But suppose,
just for fun, that we decided to compute the DiD estimand. What would we end up with?
Since D is independent of YBefore, YAfter(0) and YAfter(1), we see that

DiD ≡ E[YAfter − YBefore|D = 1]−E[YAfter − YBefore|D = 0]

= E[YAfter(1)− YBefore|D = 1]−E[YAfter(0)− YBefore|D = 0]

= E[YAfter(1)− YBefore]−E[YAfter(0)− YBefore]

= E[YAfter(1)− YAfter(0)] ≡ ATE.

so the DiD approach identifies the same causal effect as the single difference approach
from above. Since both identify the same thing, we’re free to choose between the DiD and
single difference approaches. The single approach certainly seems simpler. Why bother
introducing a second set of differences? It turns out that there’s a very good reason to
prefer the DiD approach: in settings like the SAT coaching example, it will generally
yield much more precise estimates of the ATE.

To see why this is so, suppose that we draw n students at random from a large
population and randomly assign n1 to the treatment group and n0 ≡ n−n1 to the control
group.3 For the treatment group, we observe an iid collection of pairs {YBefore,i, YAfter,i(1)}
where i = 1, . . . , n1. For the control group, we observe as second iid collection of pairs
{YBefore,j, YAfter,j(0)} where j = 1, . . . , n0. All of the observations for the control group
are independent of those for the treatment group, and vice-versa.
Finish the explanation and derivation

3In other words, I take an “infinite population” approach to computing the variance of a sampling
distribution in this section.
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