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Review of “Textbook” Instrumental Variables (V) Model
Observed
» Y = Outcome (Wage)

» D = Treatment (Attend Uni)
» Z = IV (Live Nearby) “

Unobserved Q Q
» U = Confounders (Ability)

Assumptions e

» Model: Y =a+ 8D+ U
» Relevance: Cov(Z,D) #0
» Exogeneity: Cov(Z,U) =0
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A Relevant, Exogenous Instrument ldentifies

Assumptions

Y=a+pD+ U, Cov(Z,D)#0, Cov(Z,U)=0

OLS
_ Cov(D,Y) pVar(D) + Cov(D,U) Cov(D, V)
fous = Var(D) Var(D) =b+ Var(D) 7P
\Y
_ Cov(Z,Y) BCov(Z,D)+ Cov(Z,U) Cov(Z,U)
v = Couz,D) = Cov(Z. D) =0t Conz,0) "
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library(mvtnorm)
library(tidyverse)
set.seed(587103)
n <- le4
sims <- rmvnorm(n, sigma = matrix(c(l, 0.5,
0.5, 1), 2, 2, byrow = TRUE))
U <- sims[,1]
V <- sims[,2]
Z <- rbinom(n, size = 1, prob = 0.3)
D <- (-0.5) + 0.3 xZ + V
beta <- (-0.3)
Y <-1 + beta * D+ U
c(0LS = cov(D, Y) / var(D), IV = cov(Z, Y) / cov(Z, D),
truth = beta) |> round(2)

##  OLS IV truth
## 0.20 -0.28 -0.30
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Which assumptions are testable in the textbook IV model?

Instrument Relevance
» Since D and Z are observed, directly estimate Cov(D, Z).

» Beware of weak instruments!

Instrument Exogeneity
» Since U is unobserved, can't directly estimate Cov(Z, U).

» Could we use the IV residuals?
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Simulation with a Bad Instrument

It has a direct effect on Y separate from its effect on D!

library(mvtnorm); library(tidyverse); library(broom); library(AER)
set.seed(587103)
n <- 1eb
sims <- rmvnorm(n, sigma = matrix(c(l, 0.5,

0.5, 1), 2, 2, byrow = TRUE))
U <- sims[,1]
V <- sims[,2]
Z <- rbinom(n, size
D <- -0.5 + 0.3 * Z
beta <- 0
Y <- 1+ beta * D -Z + U # Instrument isn't excluded!

1, prob = 0.3)

-+
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Bad Instrument Is Uncorrelated with IV Residuals!

iv_results <- ivreg(Y ~ D | Z)
tidy(iv_results) |> knitr::kable(digits = 2)

term estimate std.error statistic p.value
(Intercept) -0.72 0.04 -17.31 0
D -3.45 0.10 -35.90 0

cov(residuals(iv_results), Z)

## [1] -1.534378e-16
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Z Is Uncorrelated with the IV Residuals By Construction

» Let U be the structural error and V be the IV residual: V =Y — oy, — G,y D.

~ Cov(Z,Y) Cov(Z,U)

v = Couz,0) = Pt Cov(z, D)

ajy = E( Y) — B/\/E(D).
> V =U <= Z is exogenous: the only way to obtain 5y = 3 and oy = a.

COV(Z, \/) = COV(Z, Y — aly — ﬁ/vD) = COV(Z, Y) - ﬁ,vCov(Z, D)
Cov(Z,Y)

= COV(Z7 Y) — m

Cov(Z,D) =0.

» Cov(Z,V) =0 by construction even when Cov(Z, U) # 0
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Multiple Instruments and Over-identification

Assumptions
» Y=a+pD+U

» Cov(Z1,D) #0, Cov(Z2,D) #0

» Cov(Z1,U) = Cov(Zp,U)=0
Implications

» Both IVs identify same effect: g

» If not, at least one is endogenous

Over-identifying Restrictions Test

» Test of null that all MCs identify
same parameters.

(1) _
v

(2) COV(ZQ, Y)
I

2) _ COV(Zl, U)

COV(Zl, U)
Cov(Z1, D)

COV(ZQ, U)

Cov(2,0) "t Cov(z, D)

COV(Z2, U)

V' 7 Cov(Z;,D)

Cov(Z, D)
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Beyond the Textbook IV Model

Heterogenous Treatment Effects
» Y =a+ 8D + U implies that everyone has the same treatment effect: .

P In reality, treatment effects differ across people.

Overidentifying restrictions?

» Out the window! Different instruments may identify different causal parameters.

Local Average Treatment Effects (LATE) Model
» What does IV tell us when treatment effects are heterogeneous?
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Review of the LATE Model
» Suppose that both D and Z are binary

Cov(z,Y) S Ev|izZ=1-E[v|Z=0]

~ Cov(D,Z2) — —1] — =
Co(Z,D) ~ b2 ~ B[DIZ = 1]~ E[DIZ = 0]

Intent-to-treat Effect: E[Y|Z = 1] —E[Y|Z =0] (ITT)
» E.g. randomized experiment with treatment offer Z and treatment take-up D

= Wald Estimand

Biv =

» Non-compliance / randomized encouragement design: D may not equal Z

» In this setting the ITT is the ATE of offering treatment.

The Wald Estimand
» ITT is “diluted” by people who are offered (Z = 1) but do not take up (D = 0)
» Divide ATE of offer on outcome Z — Y by that of offer on take-up Z — D.

» Under what assumptions does this give us a meaningful causal quantity?
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Decomposing the ITT Effect
» Example: moving to opportunity (MTO) experiment randomly offered housing
vouchers to encourage families to move to a more affluent neighborhood.

» 50% of offered families (Z = 1) moved; 20% of non-offered families (Z = 0) moved

Y=(1-D)Yo+DY1, p,=P(D=1|Z=2)
» E[Y|Z = 1] is a mixture of Yy and Y; for different types of families:
ElY|Z=1=1-p)E[Y|Z=1,D=0]+ p1 E[Y1|Z=1,D=1]
— ~~
~0.5 ~0.5
» E[Y|Z = 0] is a mixture of Yy and Y; for different types of families:

E[Y|Z=0]=(1—-po)E[Yo|Z=0,D=0]+ po E[V1]Z=0,D =1]
s <2
~0.8 ~0.
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Compliance “Types” in the LATE Model

» Catalogue all possible treatment take-up “decision rules”

Never-taker:
Always-taker:
Complier:
Defier:

In the MTO Example

-~~~
I
Q0 v 3

1ruy

)=0
)=1
)=Z
) =(1-2).

» Never-takers: families that refuse to move with or without a voucher

> Always-takers: families that will move with or without a voucher

» Compliers are families that will only move if given a voucher

» Defiers are families that will only move if not given a voucher
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Assumption 1 - Unconfounded Type
For all compliance types t € {a,c,n,d}

P(T=t)=P(T = t|Z=0)=P(T = t|Z=1).
Assumption 2 - No Defiers: P(T = d) =0

Assumption 3 - Mean Exclusion Restriction
For all compliance types t € {a,c,n,d}

E[Yo|Z=0,T=t]=E[YolZ=1,T =t] =E[Yo|T = ¢]
E[Vi|Z=0,T=t]=E[Vi|Z=1,T = t] =E[V4| T = ¢]

Assumption 4 - Existence of Compliers: P(T =c¢) >0
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Lemma 1: Assumptions 1-2 —

P(D=1Z=1)=P(T = a) + (T = c)
P(D=0Z=1)=P(T = n)
P(D=1Z =0)=P(T = a)
P(D=0/Z=0)=P(T =c)+P(T = n)

Lemma 2: Assumptions 1-3 —

E[YID=1,Z=1]=

P(T =a)E[Y1|T =a]+P(T = c)E[Y1| T = (]

P(T =a) + P(T = c)
E[Y|D=0,Z=1]=E[Y|T = n]
E[Y|ID=1,Z=01=E[%|T = 4

E[Y|D=0,Z=0]=

P(T = n)E [Yo|T = n] + P(T = )E[Yo| T = (]

P(T =n)+P(T =c)
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The LATE Theorem: Wald = ATE for Compliers

Theorem: Assumptions 1-4 —

E(Y|Z=1)-E(Y|Z=0) -
E(DZ=1)—E(D|z=0) M- NlT=d

Proof
» Algebra and of Iterated Expectations, using the two lemmas. (See lecture notes)

MTO Example

> ITT is the average treatment effect of offering a housing voucher.

» Wald = LATE is the average treatment effect of moving to opportunity for families
who can be induced to move by a housing voucher.

» Different IV = different compliers = different LATE. It's a local effect!
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Are the LATE Assumptions Testable?

LATE Assumptions
1. Unconfounded Type

2. No Defiers
3. Mean Exclusion Restriction
4

. Existence of Compliers

At Least One is Testable!
» Assumptions 1-3 = P(T = c¢) =E[D|Z = 1] — E[D|Z = Q]

» Thus, Assumption 4 is just instrument relevance, hence testable.

» What about the others?
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Even Nobel Laureates Make Mistakes
Angrist & Imbens (1994)

Part (i) is similar to an exclusion restriction in a regression model. It is not
testable and has to be considered on a case by case basis.

Pearl (1995)

exogeneity ... can be given an empirical test. The test is not guaranteed to
detect all violations of exogeneity, but it can, in certain circumstances, screen
out very bad would-be instruments.

This Lecture
» Testable implications LATE assumptions from above: Huber & Mellace (2015)

Closely-related Work
> Kitagawa (2015)

» Mourifié & Wan (2017)
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https://www.treatment-effects.com/Huber-Mellace-2015.pdf
https://www.treatment-effects.com/Kitagawa-2015.pdf
https://www.treatment-effects.com/Mourifie-Wan-2017.pdf

Huber & Mellace (2015) — The Big Picture

Assumptions 1-3 imply four inequalities: #; <0, 6, <0, 603 <0,0, <0

0 = (01,02, 603,04) depend only on (Y, D, Z); we'll define them shortly.

If any element of 8 is positive at least one of Assumptions 1-3 must be false.
In practice: compare estimate 0 to appropriate standard errors.

Not all violations of the LATE assumptions lead to a positive value for 8

Necessary but not sufficient for validity of LATE assumptions.

vV v v v v VY

The four inequalities come in pairs. We'll look at each pair in turn.
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Example: Card (1995)*

» Y = log(Wage), D = College, Z = Live Nearby

library(tidyverse); library(wooldridge); library(estimatr)
card1995 <- as_tibble(card) |>
mutate(Y = lwage, # log(wage)
Z = nearc4, # Live near 4 year college?
D =1 % (educ >= 16)) |> # Attend college? (>=16 years educ)
select(Y, Z, D)

iv <- iv_robust(Y ~ D | Z, card1995)
ols <- 1lm_robust(Y ~ D, card1995)

1Using geographic variation in college proximity to estimate the return to schooling
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https://www.nber.org/system/files/working_papers/w4483/w4483.pdf

IV Estimate is Implausibly Large

library(modelsummary)

modelsummary(list(OLS = ols, IV = iv), output = 'gt', fmt = 2,
gof_omit = 'Num.Obs.|R2|R2 Adj.|AIC|BIC|RMSE',
coef_omit = '(Intercept)')

OLS v

D 023 2.27
(0.02) (0.55)

Remember: this is on the log scale!
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Example of the Huber & Mellace (2015) Approach

» Suppose that all of the LATE assumptions hold and define:

_ ]P’(T:n) _]P)(D:0|Z:]_)
r= P(T=c)+P(T=n) P(D=0/Z=0) (by Lemma 1)

» Distribution of Y|(D =0,Z = 0) is a mixture of Yy for compliers and never-takers.

» The mixture contains r x 100% never-takers and (1 — r) x 100% compliers.
» Let's calculate r in the Card (1995) example:

r <- card1995 |>
summarize(p01l = sum(D == 0 & Z == 1) / sum(Z == 1),
p00 = sum(D == 0 & Z == 0) / sum(Z == 0),
r = p01 / p00) |> pull(r)
r

## [1] 0.9115626
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Density of Y|(D = 0,Z = 0) from Card (1995)

y00_density <- card1995 |> filter(D == 0, Z == 0) |>
ggplot(aes(x = Y)) +
geom_density() +
geom_vline(aes(xintercept = quantile(Y, 1 - r)),
color = 'red', linetype = 'dashed', size = 1) +
xlab('') + ylab('') +
theme_bw ()
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Density of Y|(D = 0,Z = 0) from Card (1995)

0.75- |
|
0.50 -
0.25- :
|
Oloo-l T |I T T T
45 5.0 5.5 6.0 6.5 7.0

» This is the density of Yy for a mix of never-takers and compliers.
» The mix contains 91% never-takers. But we don't know where they are.
» Dashed red line: 9th %-tile of the density.

P If all never-takers are at the top of the distribution, they're above this line.
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Density of Y; for a mixture containing 91% never-takers, 9% compliers

0.75- |
|
0.50 -
0.25- :
|
Oloo-l T |I T T T
45 5.0 5.5 6.0 6.5 7.0

> If all never-takers are at the top of the distribution, they're above the red line.
» Mean of all observations above red line bounds E[Yy| T = n] from above
» But Lemma 2 shows that E(Yy|T = n) =E(Y|D=0,Z =1).

P If this contradicts the upper bound something must be wrong.
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Contradiction = LATE Assumptions Fail

Previous Slide: E(Yy|T =n) <E(Y|D=0,Z=0,Y > y;_,)

card1995 |> filter(D == 0, Z == 0) |>
summarize(ninth_percentile = quantile(Y, 1 - r),
upper_bound = mean(Y[Y >= ninth_percentile])) |[>
pull (upper_bound)

## [1] 6.154926

Lemma 2: E(Yo|T =n)=E(Y|D=0,Z=1)
card1995 [> filter(D == 0, Z == 1) |> summarize(mean(Y)) |> pull()

## [1] 6.254177

This contradicts the upper bound! Something must be wrong!
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First Pair of Inequalities
Define: Fi1(y) =P(Y <y|D=1,Z=1) and

= 3t - = - —
Yq 11 (9); y1-q 1 ( q), q P(D=1/Z =1)
Under Assumptions 1-3:
E(YID=1,Z=1Y <y, <E(Y|D=1,Z=0)<EY|D=1,Z=1,Y > y1_q)

Key Points
» Lemmal = E(Y|D=1,Z=0)=E(Y1]T = a) so now we have two partial

identification bounds as well.
» Why care? Overidentifying Restrictions

» At most one of the pair can be violated.
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Second Pair of Inequalities

Define Foo(y) =P(Y <y|D=0,Z=0) and
P(D =0|Z = 1)
P(D=0[Z =0)’

Ve = Fo(r), yir=Fo'(L=r), r
Under Assumptions 1-3:
E(YID=0,Z=0,Y<y,)<E(Y|ID=0,Z=1)<E(Y|D=0,Z=0,Y > y1,)

Key Points
» Lemmal = E(Y|D=0,Z=1)=E(Yy|T = n) so now we have two partial

identification bounds as well.
» Why care? Overidentifying Restrictions

» At most one of the pair can be violated.
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Theorem: Assumptions 1-3 —

6 [ E(YID=1,Z=1,Y<y,)-E(Y|ID=1,Z=0)| [0
6> E(YID=1,Z=0)-E(YID=1,Z=1,Y > y1_4) 0
= <
03 E(Y|D=0,Z=0,Y <y,)-E(Y|D=0,Z=1) 0

6s] [E(YID=0,Z=1)-E(Y|D=0,Z=0,Y>y_,)| |0

Where: F11(y) =P(Y <y|D=1,Z=1), Foo(y) =P(Y <y|D=0,Z=0), and

B 3 P(D=1|Z=0)

= F1 g= (1 - =
Yq 11 (9), »n q 11 ( q), q P(D=1|Z=1)
B N P(D=0[Z=1)
s = Foot = Flt(l - = .
y o0 (N: »n oo (L=r) 7 P(D = 0|Z = 0)
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