Testing the LATE Assumptions

Francis DiTraglia

Oxford Economics Summer School 2023

Review of "Textbook" Instrumental Variables (IV) Model

Observed

- $Y=$ Outcome (Wage)
- $D=$ Treatment (Attend Uni)
- $Z=\mathrm{IV}$ (Live Nearby)

Unobserved

- $U=$ Confounders (Ability)

Assumptions

- Model: $Y=\alpha+\beta D+U$
- Relevance: $\operatorname{Cov}(Z, D) \neq 0$
- Exogeneity: $\operatorname{Cov}(Z, U)=0$

A Relevant, Exogenous Instrument Identifies β
Assumptions

$$
Y=\alpha+\beta D+U, \quad \operatorname{Cov}(Z, D) \neq 0, \quad \operatorname{Cov}(Z, U)=0
$$

OLS

$$
\beta_{\mathrm{OLS}}=\frac{\operatorname{Cov}(D, Y)}{\operatorname{Var}(D)}=\frac{\beta \operatorname{Var}(D)+\operatorname{Cov}(D, U)}{\operatorname{Var}(D)}=\beta+\frac{\operatorname{Cov}(D, U)}{\operatorname{Var}(D)} \neq \beta
$$

IV

$$
\beta_{\mathrm{IV}}=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\frac{\beta \operatorname{Cov}(Z, D)+\operatorname{Cov}(Z, U)}{\operatorname{Cov}(Z, D)}=\beta+\frac{\operatorname{Cov}(Z, U)}{\operatorname{Cov}(Z, D)}=\beta
$$

```
library(mvtnorm)
library(tidyverse)
set.seed(587103)
n <- 1e4
sims <- rmvnorm(n, sigma = matrix(c(1, 0.5,
                                    0.5, 1), 2, 2, byrow = TRUE))
U <- sims[,1]
V <- sims[,2]
Z <- rbinom(n, size = 1, prob = 0.3)
D <- (-0.5) + 0.3 * Z + V
beta <- (-0.3)
Y <- 1 + beta * D + U
c(OLS = cov(D, Y) / var(D), IV = cov(Z, Y) / cov(Z, D),
    truth = beta) |> round(2)
```

\#\#	OLS	IV truth	
\#\#	0.20	-0.28	-0.30

Which assumptions are testable in the textbook IV model?

Instrument Relevance

- Since D and Z are observed, directly estimate $\operatorname{Cov}(D, Z)$.
- Beware of weak instruments!

Instrument Exogeneity

- Since U is unobserved, can't directly estimate $\operatorname{Cov}(Z, U)$.
- Could we use the IV residuals?

Simulation with a Bad Instrument

```
It has a direct effect on }Y\mathrm{ separate from its effect on D!
library(mvtnorm); library(tidyverse); library(broom); library(AER)
set.seed(587103)
n <- 1e5
sims <- rmvnorm(n, sigma = matrix(c(1, 0.5,
                                    0.5, 1), 2, 2, byrow = TRUE))
U <- sims[,1]
V <- sims[,2]
Z <- rbinom(n, size = 1, prob = 0.3)
D <- -0.5 + 0.3 * Z + V
beta <- 0
Y <- 1 + beta * D - Z + U # Instrument isn't excluded!
```


Bad Instrument Is Uncorrelated with IV Residuals!

```
iv_results <- ivreg(Y ~ D | Z)
tidy(iv_results) |> knitr::kable(digits = 2)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-0.72	0.04	-17.31	0
D	-3.45	0.10	-35.90	0

```
cov(residuals(iv_results), Z)
## [1] -1.534378e-16
```

Z Is Uncorrelated with the IV Residuals By Construction

- Let U be the structural error and V be the IV residual: $V \equiv Y-\alpha_{I V}-\beta_{I V} D$.

$$
\beta_{I V}=\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\beta+\frac{\operatorname{Cov}(Z, U)}{\operatorname{Cov}(Z, D)}, \quad \alpha_{I V}=\mathbb{E}(Y)-\beta_{I V} \mathbb{E}(D)
$$

- $V=U \Longleftrightarrow Z$ is exogenous: the only way to obtain $\beta_{I V}=\beta$ and $\alpha_{I V}=\alpha$.

$$
\begin{aligned}
\operatorname{Cov}(Z, V) & =\operatorname{Cov}\left(Z, Y-\alpha_{I V}-\beta_{I V} D\right)=\operatorname{Cov}(Z, Y)-\beta_{I V} \operatorname{Cov}(Z, D) \\
& =\operatorname{Cov}(Z, Y)-\frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)} \operatorname{Cov}(Z, D)=0
\end{aligned}
$$

- $\operatorname{Cov}(Z, V)=0$ by construction even when $\operatorname{Cov}(Z, U) \neq 0$

Multiple Instruments and Over-identification

Assumptions

- $Y=\alpha+\beta D+U$
- $\operatorname{Cov}\left(Z_{1}, D\right) \neq 0, \operatorname{Cov}\left(Z_{2}, D\right) \neq 0$
- $\operatorname{Cov}\left(Z_{1}, U\right)=\operatorname{Cov}\left(Z_{2}, U\right)=0$

Implications

- Both IVs identify same effect: β
- If not, at least one is endogenous

Over-identifying Restrictions Test

- Test of null that all MCs identify same parameters.

$$
\beta_{I V}^{(1)} \equiv \frac{\operatorname{Cov}\left(Z_{1}, Y\right)}{\operatorname{Cov}\left(Z_{1}, D\right)}=\beta+\frac{\operatorname{Cov}\left(Z_{1}, U\right)}{\operatorname{Cov}\left(Z_{1}, D\right)}
$$

$$
\beta_{I V}^{(2)} \equiv \frac{\operatorname{Cov}\left(Z_{2}, Y\right)}{\operatorname{Cov}\left(Z_{2}, D\right)}=\beta+\frac{\operatorname{Cov}\left(Z_{2}, U\right)}{\operatorname{Cov}\left(Z_{2}, D\right)}
$$

Beyond the Textbook IV Model

Heterogenous Treatment Effects

- $Y=\alpha+\beta D+U$ implies that everyone has the same treatment effect: β.
- In reality, treatment effects differ across people.

Overidentifying restrictions?

- Out the window! Different instruments may identify different causal parameters.

Local Average Treatment Effects (LATE) Model

- What does IV tell us when treatment effects are heterogeneous?

Review of the LATE Model

- Suppose that both D and Z are binary

$$
\beta_{\mathrm{IV}} \equiv \frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\frac{\frac{\operatorname{Cov}(Y, Z)}{\operatorname{Var}(Z)}}{\frac{\operatorname{Cov}(D, Z)}{\operatorname{Var}(Z)}}=\frac{\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]}{\mathbb{E}[D \mid Z=1]-\mathbb{E}[D \mid Z=0]} \equiv \text { Wald Estimand }
$$

Intent-to-treat Effect: $\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]$ (ITT)

- E.g. randomized experiment with treatment offer Z and treatment take-up D
- Non-compliance / randomized encouragement design: D may not equal Z
- In this setting the ITT is the ATE of offering treatment.

The Wald Estimand

- ITT is "diluted" by people who are offered $(Z=1)$ but do not take up $(D=0)$
- Divide ATE of offer on outcome $Z \rightarrow Y$ by that of offer on take-up $Z \rightarrow D$.
- Under what assumptions does this give us a meaningful causal quantity?

Decomposing the ITT Effect

- Example: moving to opportunity (MTO) experiment randomly offered housing vouchers to encourage families to move to a more affluent neighborhood.
- 50% of offered families $(Z=1)$ moved; 20% of non-offered families $(Z=0)$ moved

$$
Y=(1-D) Y_{0}+D Y_{1}, \quad p_{z} \equiv \mathbb{P}(D=1 \mid Z=z)
$$

- $\mathbb{E}[Y \mid Z=1]$ is a mixture of Y_{0} and Y_{1} for different types of families:

$$
\mathbb{E}[Y \mid Z=1]=\underbrace{\left(1-p_{1}\right)}_{\approx 0.5} \mathbb{E}\left[Y_{0} \mid Z=1, D=0\right]+\underbrace{p_{1}}_{\approx 0.5} \mathbb{E}\left[Y_{1} \mid Z=1, D=1\right]
$$

- $\mathbb{E}[Y \mid Z=0]$ is a mixture of Y_{0} and Y_{1} for different types of families:

$$
\mathbb{E}[Y \mid Z=0]=\underbrace{\left(1-p_{0}\right)}_{\approx 0.8} \mathbb{E}\left[Y_{0} \mid Z=0, D=0\right]+\underbrace{p_{0}}_{\approx 0.2} \mathbb{E}\left[Y_{1} \mid Z=0, D=1\right]
$$

Compliance "Types" in the LATE Model

- Catalogue all possible treatment take-up "decision rules"

$$
\begin{aligned}
& \text { Never-taker: } T=n \\
& \text { Always-taker: } \quad \Longleftrightarrow=a \quad D(Z)=0 \\
& \text { Complier: } T=c \\
& \text { Defier: } \quad \Longleftrightarrow=d \quad D(Z)=1 \\
& \Longleftrightarrow D(Z)=Z \\
&
\end{aligned}
$$

In the MTO Example

- Never-takers: families that refuse to move with or without a voucher
- Always-takers: families that will move with or without a voucher
- Compliers are families that will only move if given a voucher
- Defiers are families that will only move if not given a voucher

Assumption 1 - Unconfounded Type
For all compliance types $t \in\{a, c, n, d\}$

$$
\mathbb{P}(T=t)=\mathbb{P}(T=t \mid Z=0)=\mathbb{P}(T=t \mid Z=1)
$$

Assumption 2 - No Defiers: $\mathbb{P}(T=d)=0$

Assumption 3 - Mean Exclusion Restriction

For all compliance types $t \in\{a, c, n, d\}$

$$
\begin{aligned}
& \mathbb{E}\left[Y_{0} \mid Z=0, T=t\right]=\mathbb{E}\left[Y_{0} \mid Z=1, T=t\right]=\mathbb{E}\left[Y_{0} \mid T=t\right] \\
& \mathbb{E}\left[Y_{1} \mid Z=0, T=t\right]=\mathbb{E}\left[Y_{1} \mid Z=1, T=t\right]=\mathbb{E}\left[Y_{1} \mid T=t\right]
\end{aligned}
$$

Assumption 4 - Existence of Compliers: $\mathbb{P}(T=c)>0$

Lemma 1: Assumptions 1-2 \Longrightarrow

$$
\begin{aligned}
& \mathbb{P}(D=1 \mid Z=1)=\mathbb{P}(T=a)+\mathbb{P}(T=c) \\
& \mathbb{P}(D=0 \mid Z=1)=\mathbb{P}(T=n) \\
& \mathbb{P}(D=1 \mid Z=0)=\mathbb{P}(T=a) \\
& \mathbb{P}(D=0 \mid Z=0)=\mathbb{P}(T=c)+\mathbb{P}(T=n)
\end{aligned}
$$

Lemma 2: Assumptions 1-3

$$
\begin{aligned}
& \mathbb{E}[Y \mid D=1, Z=1]=\frac{\mathbb{P}(T=a) \mathbb{E}\left[Y_{1} \mid T=a\right]+\mathbb{P}(T=c) \mathbb{E}\left[Y_{1} \mid T=c\right]}{\mathbb{P}(T=a)+\mathbb{P}(T=c)} \\
& \mathbb{E}[Y \mid D=0, Z=1]=\mathbb{E}\left[Y_{0} \mid T=n\right] \\
& \mathbb{E}[Y \mid D=1, Z=0]=\mathbb{E}\left[Y_{1} \mid T=a\right] \\
& \mathbb{E}[Y \mid D=0, Z=0]=\frac{\mathbb{P}(T=n) \mathbb{E}\left[Y_{0} \mid T=n\right]+\mathbb{P}(T=c) \mathbb{E}\left[Y_{0} \mid T=c\right]}{\mathbb{P}(T=n)+\mathbb{P}(T=c)}
\end{aligned}
$$

The LATE Theorem: Wald = ATE for Compliers

Theorem: Assumptions 1-4 \Longrightarrow

$$
\frac{\mathbb{E}(Y \mid Z=1)-\mathbb{E}(Y \mid Z=0)}{\mathbb{E}(D \mid Z=1)-\mathbb{E}(D \mid Z=0)}=\mathbb{E}\left[Y_{1}-Y_{0} \mid T=c\right]
$$

Proof

- Algebra and of Iterated Expectations, using the two lemmas. (See lecture notes)

MTO Example

- ITT is the average treatment effect of offering a housing voucher.
- Wald $=$ LATE is the average treatment effect of moving to opportunity for families who can be induced to move by a housing voucher.
- Different IV \Longrightarrow different compliers \Longrightarrow different LATE. It's a local effect!

Are the LATE Assumptions Testable?

LATE Assumptions

1. Unconfounded Type
2. No Defiers
3. Mean Exclusion Restriction
4. Existence of Compliers

At Least One is Testable!

- Assumptions $1-3 \Longrightarrow \mathbb{P}(T=c)=\mathbb{E}[D \mid Z=1]-\mathbb{E}[D \mid Z=0]$
- Thus, Assumption 4 is just instrument relevance, hence testable.
- What about the others?

Even Nobel Laureates Make Mistakes

Angrist \& Imbens (1994)
Part (i) is similar to an exclusion restriction in a regression model. It is not testable and has to be considered on a case by case basis.

Pearl (1995)
exogeneity ... can be given an empirical test. The test is not guaranteed to detect all violations of exogeneity, but it can, in certain circumstances, screen out very bad would-be instruments.

This Lecture

- Testable implications LATE assumptions from above: Huber \& Mellace (2015)

Closely-related Work

- Kitagawa (2015)
- Mourifié \& Wan (2017)

Huber \& Mellace (2015) - The Big Picture

- Assumptions 1-3 imply four inequalities: $\theta_{1} \leq 0, \theta_{2} \leq 0, \theta_{3} \leq 0, \theta_{4} \leq 0$
- $\theta \equiv\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$ depend only on (Y, D, Z); we'll define them shortly.
- If any element of θ is positive at least one of Assumptions 1-3 must be false.
- In practice: compare estimate $\hat{\theta}$ to appropriate standard errors.
- Not all violations of the LATE assumptions lead to a positive value for θ
- Necessary but not sufficient for validity of LATE assumptions.
- The four inequalities come in pairs. We'll look at each pair in turn.

Example: Card $(1995)^{1}$

- $Y=\log ($ Wage $), D=$ College, $Z=$ Live Nearby

```
library(tidyverse); library(wooldridge); library(estimatr)
card1995 <- as_tibble(card) |>
    mutate(Y = lwage, # log(wage)
            Z = nearc4, # Live near 4 year college?
            D = 1 * (educ >= 16)) |> # Attend college? (>=16 years educ)
    select(Y, Z, D)
iv <- iv_robust(Y ~ D | Z, card1995)
ols <- lm_robust(Y ~ D, card1995)
```

[^0]
IV Estimate is Implausibly Large

library (modelsummary)
modelsummary(list(OLS = ols, IV = iv), output = 'latex', fmt = 2, gof_omit $=$ 'Num.Obs.|R2|R2 Adj.|AIC|BIC|RMSE', coef_omit = '(Intercept)')

	OLS	IV
D	0.23	2.27
	(0.02)	(0.55)

Remember: this is on the log scale!

Example of the Huber \& Mellace (2015) Approach

- Suppose that all of the LATE assumptions hold and define:

$$
r \equiv \frac{\mathbb{P}(T=n)}{\mathbb{P}(T=c)+\mathbb{P}(T=n)}=\frac{\mathbb{P}(D=0 \mid Z=1)}{\mathbb{P}(D=0 \mid Z=0)} \quad \text { (by Lemma 1) }
$$

- Distribution of $Y \mid(D=0, Z=0)$ is a mixture of Y_{0} for compliers and never-takers.
- The mixture contains $r \times 100 \%$ never-takers and $(1-r) \times 100 \%$ compliers.
- Let's calculate r in the Card (1995) example:

```
r <- card1995 |>
    summarize(p01 = sum(D == 0 & Z == 1) / sum(Z == 1),
        p00 = sum(D == 0 & Z == 0) / sum(Z == 0),
        r = p01 / p00) |> pull(r)
```

r
\#\# [1] 0.9115626

Density of $Y \mid(D=0, Z=0)$ from Card (1995)

```
y00_density <- card1995 |> filter(D == 0, Z == 0) |>
    ggplot(aes(x = Y)) +
    geom_density() +
    geom_vline(aes(xintercept = quantile(Y, 1 - r)),
    color = 'red', linetype = 'dashed', size = 1) +
    xlab('') + ylab('') +
    theme_bw()
```


Density of $Y \mid(D=0, Z=0)$ from Card (1995)

- This is the density of Y_{0} for a mix of never-takers and compliers.
- The mix contains 91% never-takers. But we don't know where they are.
- Dashed red line: 9th \%-tile of the density.
- If all never-takers are at the top of the distribution, they're above this line.

Density of Y_{0} for a mixture containing 91% never-takers, 9% compliers

- If all never-takers are at the top of the distribution, they're above the red line.
- Mean of all observations above red line bounds $\mathbb{E}\left[Y_{0} \mid T=n\right]$ from above
- But Lemma 2 shows that $\mathbb{E}\left(Y_{0} \mid T=n\right)=\mathbb{E}(Y \mid D=0, Z=1)$.
- If this contradicts the upper bound something must be wrong.

Contradiction \Longrightarrow LATE Assumptions Fail

```
Previous Slide: \(\mathbb{E}\left(Y_{0} \mid T=n\right) \leq \mathbb{E}\left(Y \mid D=0, Z=0, Y \geq y_{1-r}\right)\)
card1995 |> filter (D == 0, Z == 0) |>
    summarize(ninth_percentile = quantile(Y, 1-r),
        upper_bound \(=\) mean(Y[Y >= ninth_percentile])) |>
    pull(upper_bound)
\#\# [1] 6.154926
```

Lemma 2: $\mathbb{E}\left(Y_{0} \mid T=n\right)=\mathbb{E}(Y \mid D=0, Z=1)$
card1995 |> filter($\mathrm{D}==0, \mathrm{Z}==1$) |> summarize(mean(Y)) |> pull()
\#\# [1] 6.254177

This contradicts the upper bound! Something must be wrong!

First Pair of Inequalities

Define: $F_{11}(y) \equiv \mathbb{P}(Y \leq y \mid D=1, Z=1)$ and

$$
y_{q} \equiv F_{11}^{-1}(q), \quad y_{1-q} \equiv F_{11}^{-1}(1-q), \quad q \equiv \frac{\mathbb{P}(D=1 \mid Z=0)}{\mathbb{P}(D=1 \mid Z=1)}
$$

Under Assumptions 1-3:

$$
\mathbb{E}\left(Y \mid D=1, Z=1, Y \leq y_{q}\right) \leq \mathbb{E}(Y \mid D=1, Z=0) \leq \mathbb{E}\left(Y \mid D=1, Z=1, Y \geq y_{1-q}\right)
$$

Key Points

- Lemma $1 \Longrightarrow \mathbb{E}(Y \mid D=1, Z=0)=\mathbb{E}\left(Y_{1} \mid T=a\right)$ so now we have two partial identification bounds as well.
- Why care? Overidentifying Restrictions
- At most one of the pair can be violated.

Second Pair of Inequalities

Define $F_{00}(y) \equiv \mathbb{P}(Y \leq y \mid D=0, Z=0)$ and

$$
y_{r} \equiv F_{00}^{-1}(r), \quad y_{1-r} \equiv F_{00}^{-1}(1-r), \quad r \equiv \frac{\mathbb{P}(D=0 \mid Z=1)}{\mathbb{P}(D=0 \mid Z=0)}
$$

Under Assumptions 1-3:

$$
\mathbb{E}\left(Y \mid D=0, Z=0, Y \leq y_{r}\right) \leq \mathbb{E}(Y \mid D=0, Z=1) \leq \mathbb{E}\left(Y \mid D=0, Z=0, Y \geq y_{1-r}\right)
$$

Key Points

- Lemma $1 \Longrightarrow \mathbb{E}(Y \mid D=0, Z=1)=\mathbb{E}\left(Y_{0} \mid T=n\right)$ so now we have two partial identification bounds as well.
- Why care? Overidentifying Restrictions
- At most one of the pair can be violated.

Theorem: Assumptions 1-3 \Longrightarrow

$$
\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4}
\end{array}\right] \equiv\left[\begin{array}{c}
\mathbb{E}\left(Y \mid D=1, Z=1, Y \leq y_{q}\right)-\mathbb{E}(Y \mid D=1, Z=0) \\
\mathbb{E}(Y \mid D=1, Z=0)-\mathbb{E}\left(Y \mid D=1, Z=1, Y \geq y_{1-q}\right) \\
\mathbb{E}\left(Y \mid D=0, Z=0, Y \leq y_{r}\right)-\mathbb{E}(Y \mid D=0, Z=1) \\
\mathbb{E}(Y \mid D=0, Z=1)-\mathbb{E}\left(Y \mid D=0, Z=0, Y \geq y_{1-r}\right)
\end{array}\right] \leq\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Where: $F_{11}(y) \equiv \mathbb{P}(Y \leq y \mid D=1, Z=1), F_{00}(y) \equiv \mathbb{P}(Y \leq y \mid D=0, Z=0)$, and

$$
\begin{aligned}
y_{q} \equiv F_{11}^{-1}(q), & y_{1-q} \equiv F_{11}^{-1}(1-q), \\
y_{r} \equiv F_{00}^{-1}(r), & q \equiv \frac{\mathbb{P}(D=1 \mid Z=0)}{\mathbb{P}(D=1 \mid Z=1)} \\
y_{1-r} \equiv F_{00}^{-1}(1-r), & r \equiv \frac{\mathbb{P}(D=0 \mid Z=1)}{\mathbb{P}(D=0 \mid Z=0)}
\end{aligned}
$$

[^0]: ${ }^{1}$ Using geographic variation in college proximity to estimate the return to schooling

