Partial Identification

Francis DiTraglia

Oxford Economics Summer School 2023

Roadmap for this Lecture

The Limits of Causal Inference

- $\left(Y_{0}, Y_{1}\right)$ never observed for the same person; can't learn their joint distribution.
- Quantities like $\operatorname{Var}\left(Y_{1}-Y_{0}\right)$ or $\mathbb{P}\left(Y_{1}-Y_{0}>0\right)$ are not identifiable.

Partial Identification

- Even if we can't pin θ down exactly, we may be able to rule out many values.

Outline

1. Simplest example of partial identification.
2. Bounds on ATE while allowing for selection bias.
3. Bound the distribution of treatment effects.

Simple Example: Reverse Regression Bounds

Population Linear Regression

- α and β are intercept and slope from population linear regression of Y on X
- Thus we can write $Y=\alpha+\beta X+U$ where we define

$$
\beta \equiv \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}, \quad \alpha \equiv \mathbb{E}[Y]-\beta \mathbb{E}[X], \quad U \equiv Y-\alpha-\beta X
$$

- By construction we have $\mathbb{E}(X U)=\mathbb{E}(U)=0$.

Point Identification

- If we could observe the whole population from which our sample was drawn, could we uniquely determine the parameters of interest?
- Suppose we observe the joint distribution of (X, Y)
- This is enough information to calculate (α, β) explicitly: they are point identified.

Classical Measurement Error

- Suppose we observe (Y, \widetilde{X}) rather than (Y, X), where $\tilde{X}=X+W$
- W is classical measurement error: $\operatorname{Cov}(W, X)=\operatorname{Cov}(W, U)=\mathbb{E}(W)=0$
- Are α and β still point identified?

The Good News

$$
\begin{aligned}
\mathbb{E}(\widetilde{X}) & =\mathbb{E}(X+W)=\mathbb{E}(X) \\
\operatorname{Cov}(\widetilde{X}, Y) & =\operatorname{Cov}(X+W, Y)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(W, Y) \\
& =\operatorname{Cov}(X, Y)+\operatorname{Cov}(W, \alpha+\beta X+U) \\
& =\operatorname{Cov}(X, Y)+\operatorname{Cov}(W, U)+\beta \operatorname{Cov}(W, X) \\
& =\operatorname{Cov}(X, Y)
\end{aligned}
$$

Are α and β still point identified?

The Bad News

- Because $\operatorname{Var}(W)$ is not point identified, neither are α and β.

$$
\begin{gathered}
\operatorname{Var}(\tilde{X})=\operatorname{Var}(X+W)=\operatorname{Var}(X)+\operatorname{Var}(W) \geq \operatorname{Var}(X) \\
\beta \equiv \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}=\frac{\operatorname{Cov}(\tilde{X}, Y)}{\operatorname{Var}(\tilde{X})-\operatorname{Var}(W)}, \quad \alpha \equiv \mathbb{E}[Y]-\beta \mathbb{E}[X]=\mathbb{E}[Y]-\beta \mathbb{E}[\widetilde{X}]
\end{gathered}
$$

Partial Identification

- We can still bound β and hence α : the so-called reverse regression bounds

A Lower Bound for β

- Since $\operatorname{Cov}(X, Y)=\operatorname{Cov}(\widetilde{X}, Y)$,

$$
\frac{\operatorname{Cov}(\tilde{X}, Y)}{\operatorname{Var}(\tilde{X})}=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)+\operatorname{Var}(W)}=\frac{\operatorname{Cov}(X, Y) / \operatorname{Var}(X)}{1+\operatorname{Var}(W) / \operatorname{Var}(X)}=\frac{\beta}{1+\operatorname{Var}(W) / \operatorname{Var}(X)}
$$

- Since $\operatorname{Var}(W) / \operatorname{Var}(X)$ is non-negative, $\operatorname{Cov}(\widetilde{X}, Y) / \operatorname{Var}(\widetilde{X})$ has same sign as β and

$$
\left|\frac{\operatorname{Cov}(\tilde{X}, Y)}{\operatorname{Var}(\tilde{X})}\right| \leq|\beta| .
$$

An Upper Bound for β

- Run the reverse regression \widetilde{X} on Y

$$
\frac{\operatorname{Cov}(\tilde{X}, Y)}{\operatorname{Var}(Y)}=\frac{\operatorname{Cov}(X, Y)}{\beta^{2} \operatorname{Var}(X)+\operatorname{Var}(U)}=\frac{\beta \operatorname{Var}(X)}{\beta^{2} \operatorname{Var}(X)+\operatorname{Var}(U)}
$$

- Take the reciprocal:

$$
\frac{\operatorname{Var}(Y)}{\operatorname{Cov}(\tilde{X}, Y)}=\beta+\frac{\operatorname{Var}(U)}{\beta \operatorname{Var}(X)}=\beta\left[1+\frac{\operatorname{Var}(U)}{\beta^{2} \operatorname{Var}(X)}\right]
$$

- Factor in brackets greater than one, so $\operatorname{Var}(Y) / \operatorname{Cov}(\widetilde{X}, Y)$ has same sign as β and

$$
\left|\frac{\operatorname{Var}(Y)}{\operatorname{Cov}(\tilde{X}, Y)}\right| \geq|\beta|
$$

Reverse Regression Bounds

Terminology

- A bound is sharp if it cannot be improved, under our assumptions.
- A bound is tight if it is short enough to be useful in a practical example.

Assumptions

- $Y=\alpha+\beta X+U$ where $\mathbb{E}(X U)=\mathbb{E}(U)=0$.
- Observe (\widetilde{X}, Y)
- $\widetilde{X}=X+W$ with $\mathbb{E}(W)=\operatorname{Cov}(W, X)=\operatorname{Cov}(W, U)=0$

Sharp Bounds for β

- β lies between $\frac{\operatorname{Cov}(\tilde{X}, Y)}{\operatorname{Var}(\widetilde{X})}$ and $\frac{\operatorname{Var}(Y)}{\operatorname{Cov}(\widetilde{X}, Y)}$

How tight are the reverse regression bounds?

- Let r denote the correlation between \widetilde{X} and Y. Then:

$$
r^{2} \equiv \frac{\operatorname{Cov}(\tilde{X}, Y)^{2}}{\operatorname{Var}(\tilde{X}) \operatorname{Var}(Y)}=\frac{\operatorname{Cov}(\tilde{X}, Y)}{\operatorname{Var}(\widetilde{X})} \cdot \frac{\operatorname{Cov}(\tilde{X}, Y)}{\operatorname{Var}(Y)}
$$

- Re-arranging, it follows that:

$$
r^{2} \cdot \frac{\operatorname{Var}(Y)}{\operatorname{Cov}(\widetilde{X}, Y)}=\frac{\operatorname{Cov}(\widetilde{X}, Y)}{\operatorname{Var}(\widetilde{X})}
$$

- All else equal, bounds for β are tighter when \widetilde{X} and Y are strongly correlated:

$$
\text { Width }=\left|\frac{\operatorname{Var}(Y)}{\operatorname{Cov}(\widetilde{X}, Y)}-\frac{\operatorname{Cov}(\widetilde{X}, Y)}{\operatorname{Var}(\widetilde{X})}\right|=\left(1-r^{2}\right)\left|\frac{\operatorname{Var}(Y)}{\operatorname{Cov}(\widetilde{X}, Y)}\right| .
$$

```
library(tidyverse)
library(broom) # for tidy()
set.seed(1066)
```

n <- 5000
X <- rnorm(n)
U <- rnorm(n)
W <- rnorm(n)
alpha <- 0.5
beta <- 1
$\mathrm{Y}<-\mathrm{alpha}+$ beta $* \mathrm{X}+\mathrm{U}$
Xtilde <- X + W

```
c(forward = cov(Xtilde, Y) / var(Xtilde),
    truth = beta,
    reverse = var(Y) / cov(Xtilde, Y)) |> round(2)
```

\#\# forward truth reverse
$\begin{array}{llll}\text { \#\# } & 0.51 & 1.00 & 1.95\end{array}$
\# The regression we can't run in practice!
$\operatorname{lm}(\mathrm{Y} \sim \mathrm{X})$ |> tidy()
\#\# \# A tibble: 2 x 5

\#\#	term	estimate	std.error	statistic	p.value
\#\#	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\# 1	(Intercept)	0.489	0.0140	34.8	$9.56 \mathrm{e}-238$
\#\# 2 X	1.02	0.0138	73.9	0	

```
# Reduce the correlation between X and Y, hence Xtilde and Y
Y <- alpha + beta * X + 3 * U
c(forward = cov(Xtilde, Y) / var(Xtilde),
    truth = beta,
    reverse = var(Y) / cov(Xtilde, Y)) |> round(2)
## forward truth reverse
## 0.52 1.00 9.31
# The regression we can't run in practice!
lm(Y ~ X) |> tidy()
## # A tibble: 2 x 5
\begin{tabular}{llrrrr} 
\#\# & term & estimate & std.error & statistic & p.value \\
\#\# & <chr> & <dbl> & <dbl> & <dbl> & <dbl> \\
\#\# & (Intercept) & 0.466 & 0.0421 & 11.1 & \(3.95 \mathrm{e}-28\) \\
\#\# 2 & X & 1.07 & 0.0414 & 25.7 & \(7.45 \mathrm{e}-137\)
\end{tabular}
```


Review of Potential Outcomes Framework

- See https://expl.ai/QHUAVRV and https://expl.ai/DWVNRZU for more details.
- Binary Treatment $D \in\{0,1\}$
- Observed Outcome Y depends on Potential Outcomes $\left(Y_{0}, Y_{1}\right)$ via

$$
Y=(1-D) Y_{0}+D Y_{1}=Y_{0}+D\left(Y_{1}-Y_{0}\right)
$$

- Only one of $\left(Y_{0}, Y_{1}\right)$ is observed for any given person at any given time.
- The unobserved potential outcome is a counterfactual, i.e. a what if?
- Average Treatment Effect: ATE $\equiv \mathbb{E}\left(Y_{1}-Y_{0}\right)$.
- Treatment on the Treated: TOT $\equiv \mathbb{E}\left(Y_{1}-Y_{0} \mid D=1\right)$.

Example: Y is Wage, D is Attend University

Counterfactuals

- $D=1 \Longrightarrow Y_{0}$ is the wage you would have earned if you hadn't attended.
- $D=0 \Longrightarrow Y_{1}$ is the wage you would have earned if you had attended.

Treatment Effects

- ATE $=\mathbb{E}\left(Y_{1}-Y_{0}\right)$ is the average effect of forcing a randomly-chosen person to attend university.
- TOT $=\mathbb{E}\left(Y_{1}-Y_{0} \mid D=1\right)$ is the average effect of attending university for the sort of people who choose to attend.

Problem: Selection Bias

- We don't force randomly-chosen people to attend university!
- People who choose to attend are likely different in many ways

Selection Bias

Naive Comparison of Means

$$
\begin{aligned}
\mathbb{E}(Y \mid D=1)-\mathbb{E}(Y \mid D=0) & =\mathbb{E}\left(Y_{1} \mid D=1\right)-\mathbb{E}\left(Y_{0} \mid D=0\right) \\
& =\mathbb{E}\left(Y_{1} \mid D=1\right)-\mathbb{E}\left(Y_{0} \mid D=0\right)+\mathbb{E}\left(Y_{0} \mid D=1\right)-\mathbb{E}\left(Y_{0} \mid D=1\right) \\
& =\underbrace{\mathbb{E}\left(Y_{1}-Y_{0} \mid D=1\right)}_{\text {TOT }}+\underbrace{\left[\mathbb{E}\left(Y_{0} \mid D=1\right)-\mathbb{E}\left(Y_{0} \mid D=0\right)\right]}_{\text {Selection Bias }}
\end{aligned}
$$

How does selection matter?

1. TOT is probably different from ATE: selection on gains.
2. Average value of Y_{0} ("outside option") probably varies with D.

How to solve the problem of selection bias?

Randomized Controlled Trial

- $D \Perp\left(Y_{0}, Y_{1}\right) \Longrightarrow \mathbb{E}\left(Y_{0} \mid D\right)=\mathbb{E}\left(Y_{0}\right)$ and $\mathbb{E}\left(Y_{1} \mid D\right)=\mathbb{E}\left(Y_{1}\right) \quad$ (video)
- Hence: TOT $=$ ATE and Selection Bias $=0$.

Other Approaches

- Selection-on-observables (chapter 4, video 1, video 2, slides, more slides)
- Instrumental Variables (chapter 5, tomorrow's lecture)
- Regression Discontinuity (chapter 7, slides)
- Difference-in-differences (chapter 8, slides)

Partial Identification

Bound the ATE without using the above approaches while allowing for selection bias.

Bounding the ATE when Y and D are Binary

- Example: $Y=1$ if you earn a PhD, $D=1$ if you attend an Ivy League University
- We know that D is not randomly assigned, and expect selection bias.

Starting point

- Assume that (Y, D) are observed.
- Since Y is binary we know that $-1 \leq$ ATE ≤ 1 without observing any data!

$$
0 \leq Y_{0} \leq 1 \quad \text { and } \quad 0 \leq Y_{1} \leq 1 \Longrightarrow 0 \leq \mathbb{E}\left(Y_{0}\right) \leq 1 \quad \text { and } \quad 0 \leq \mathbb{E}\left(Y_{1}\right) \leq 1
$$

Shorthand

$$
\begin{aligned}
P_{11} & \equiv \mathbb{P}(Y=1 \mid D=1)=\mathbb{E}[Y \mid D=1]=\mathbb{E}\left[Y_{1} \mid D=1\right] \\
P_{10} & \equiv \mathbb{P}(Y=1 \mid D=0)=\mathbb{E}[Y \mid D=0]=\mathbb{E}\left[Y_{0} \mid D=0\right] \\
p & \equiv \mathbb{P}(D=1)=\mathbb{E}(D)
\end{aligned}
$$

Assumption-Free Bounds: Improving on $-1 \leq$ ATE ≤ 1 Y and D Are Observed

- $\Longrightarrow P_{11} \equiv \mathbb{E}\left[Y_{1} \mid D=1\right], P_{10} \equiv \mathbb{E}\left[Y_{0} \mid D=0\right]$, and $p \equiv \mathbb{E}(D)$ are observed Iterated Expectations

$$
\begin{aligned}
& \mathbb{E}\left[Y_{1}\right]=\mathbb{E}_{D}\left[\mathbb{E}\left(Y_{1} \mid D\right)\right]=P_{11} p+\mathbb{E}\left[Y_{1} \mid D=0\right](1-p) \\
& \mathbb{E}\left[Y_{0}\right]=\mathbb{E}_{D}\left[\mathbb{E}\left(Y_{0} \mid D\right)\right]=\mathbb{E}\left[Y_{0} \mid D=1\right] p+P_{10}(1-p) .
\end{aligned}
$$

Bound the Unobserved Quantities

- $\mathbb{E}\left[Y_{1} \mid D=0\right]$ and $\mathbb{E}\left[Y_{0} \mid D=1\right]$ are between 0 and 1

$$
\begin{aligned}
p P_{11} & \leq \mathbb{E}\left[Y_{1}\right] \leq p P_{11}+(1-p) \\
(1-p) P_{10} & \leq \mathbb{E}\left[Y_{0}\right] \leq p+(1-p) P_{10}
\end{aligned}
$$

Assumption-Free Bounds: Width Equals 1

Previous Slide

$$
\begin{aligned}
p P_{11} & \leq \mathbb{E}\left[Y_{1}\right] \leq p P_{11}+(1-p) \\
(1-p) P_{10} & \leq \mathbb{E}\left[Y_{0}\right] \leq p+(1-p) P_{10}
\end{aligned}
$$

Combine These

$$
p P_{11}-(1-p) P_{10}-p \leq \mathbb{E}\left[Y_{1}-Y_{0}\right] \leq p P_{11}-(1-p) P_{10}+(1-p)
$$

Written More Compactly

$$
q \leq \text { ATE } \leq(q+1), \quad q \equiv\left[p P_{11}-(1-p) P_{10}-p\right]
$$

- Half as wide as $-1 \leq$ ATE ≤ 1 but always includes zero

Add Assumptions, Tighten the Bounds (Details in Lecture Notes)
Monotone Treatment Selection (MTS)

- Suppose we know direction of self-selection into treatment, e.g. positive:

$$
\mathbb{E}\left(Y_{1} \mid D=0\right) \leq \mathbb{E}\left(Y_{1} \mid D=1\right) \quad \text { and } \quad \mathbb{E}\left(Y_{0} \mid D=0\right) \leq \mathbb{E}\left(Y_{0} \mid D=1\right)
$$

- Positive MTS gives an improved upper bound for the ATE:

$$
q \leq \mathrm{ATE} \leq P_{11}-P_{10} \leq(q+1), \quad q \equiv\left[p P_{11}-(1-p) P_{10}-p\right]
$$

Monotone Treatment Response (MTR)

- Suppose we know the direction of the causal effect: e.g. positive effect: $Y_{1}>Y_{0}$.
- Positive MTR gives an improved lower bound for the ATE, namely zero:

$$
0 \leq \mathrm{ATE} \leq(q+1)
$$

A Comparison of Bounds

- Preceding bounds are sharp under their respective assumptions. How tight are they?
- Example: suppose that 8% of Ivy League graduates earn a PhD versus 1.5% of the general public and that 0.2% of people attend an Ivy League institution.

$$
\left(P_{11}=0.08, P_{10}=0.015, p=0.002\right) \Longrightarrow q \equiv\left[p P_{11}-(1-p) P_{10}-p\right] \approx-0.017
$$

$$
\begin{aligned}
\text { No Asumptions: } & {[q, q+1] \approx[-0.017,0.983] } \\
\text { Positive MTS: } & {\left[q, P_{11}-P_{10}\right] \approx[-0.017,0.065] } \\
\text { Positive MTR: } & {[0, q+1] \approx[0,0.983] } \\
\text { Positive MTS + MTR: } & {\left[0, P_{11}-P_{10}\right]=[0,0.065] . }
\end{aligned}
$$

- Here positive MTR has little effect; positive MTS makes a dramatic difference!

Bounding the Distribution of Treatment Effects

- Randomly assign $D \Longrightarrow$ ATE point identified: no selection bias!
- $\left(Y_{0}, Y_{1}\right)$ never observed for same person; can't learn joint distribution.
- Anything that depends on this joint distribution is not point identified.
- Examples: $\operatorname{Var}\left(Y_{1}-Y_{0}\right), \mathbb{P}\left(Y_{1}-Y_{0}>0\right)$
- Can we partially identify the distribution of treatment effect $\left(Y_{1}-Y_{0}\right)$?
- Start with binary Y case; then consider the general case.

Unobserved: Joint Distribution of $\left(Y_{0}, Y_{1}\right)$, Distribution of $\left(Y_{1}-Y_{0}\right)$

		Y_{1}	
		0	
Y_{0}	0	$\mathbb{P}($ Doomed $)$	$\mathbb{P}($ (cured $)$
	1	\mathbb{P} (Allergic)	\mathbb{P} (Immune)

- Dangerous disease, and dangerous treatment.
- Treatment helps some people (the "Cured"), harms others (the "Allergic").
- Treatment has no effect on other people (the "Doomed" and "Immune")
- Are more people helped than harmed?

Observed: Marginal Distributions of Y_{0} and Y_{1}

- Assume (Y, D) come from a randomized, double-blind, placebo-controlled trial.
- p_{0} is the share of untreated who recover; p_{1} is the share of treated who recover.
- The ATE is $p_{1}-p_{0}$
- Try to bound what we can't observe using what we can observe.

From Joint (Unobserved) to Marginals (Observed)

Recall: $p_{0} \equiv \mathbb{P}\left(Y_{0}=1\right)$ and $p_{1} \equiv \mathbb{P}\left(Y_{1}=1\right)$.

Shorthand: $\alpha \equiv \mathbb{P}$ (Allergic)

Previous Slide

$$
\begin{aligned}
\left(1-p_{0}\right) & =\mathbb{P}(\text { Doomed })+\mathbb{P}(\text { Cured }) \\
p_{0} & =\mathbb{P}(\text { Allergic })+\mathbb{P}(\text { Immune }) \\
\left(1-p_{1}\right) & =\mathbb{P}(\text { Doomed })+\mathbb{P}(\text { Allergic }) \\
p_{1} & =\mathbb{P}(\text { Cured })+\mathbb{P}(\text { Immune })
\end{aligned}
$$

Rearranging

$$
\begin{aligned}
\mathbb{P}(\text { Immune }) & =p_{0}-\alpha \\
\mathbb{P}(\text { Doomed }) & =\left(1-p_{1}\right)-\alpha \\
\mathbb{P}(\text { Cured }) & =\left(p_{1}-p_{0}\right)+\alpha
\end{aligned}
$$

- Everything is written in terms of observables $\left(p_{0}, p_{1}\right)$ and α !

Bounding $\alpha \equiv \mathbb{P}$ (Allergic)

Previous Slide

- $\mathbb{P}($ Immune $)=p_{0}-\alpha, \mathbb{P}($ Doomed $)=\left(1-p_{1}\right)-\alpha, \mathbb{P}($ Cured $)=\left(p_{1}-p_{0}\right)+\alpha$

Probabilities are between 0 and 1

- Apply Immune, Doomed, and Cured to bound α :

$$
0 \leq\left(p_{1}-p_{0}\right)+\alpha \leq 1, \quad 0 \leq\left(1-p_{1}\right)-\alpha \leq 1, \quad 0 \leq p_{0}-\alpha \leq 1
$$

Simplify

- Rearrange the preceding, and combine with $0 \leq \alpha \leq 1$

$$
\max \{-\mathrm{ATE}, 0\} \leq \alpha \leq \min \left\{p_{0},\left(1-p_{1}\right)\right\}, \quad \mathrm{ATE}=\left(p_{1}-p_{0}\right)
$$

(Pointwise) Sharp Bounds for Distribution of Treatment Effects

Previous Slide

- $\mathbb{P}($ Immune $)=p_{0}-\alpha, \mathbb{P}($ Doomed $)=\left(1-p_{1}\right)-\alpha, \mathbb{P}($ Cured $)=\left(p_{1}-p_{0}\right)+\alpha$
$-\max \left\{-\left(p_{1}-p_{0}\right), 0\right\} \leq \alpha \leq\left\{p_{0},\left(1-p_{1}\right)\right\}$
Shorthand
- $\underline{\alpha} \equiv \max \left\{-\left(p_{1}-p_{0}\right), 0\right\}, \quad \bar{\alpha} \equiv \min \left\{p_{0},\left(1-p_{1}\right)\right\}$

Combine

- Recall that $\alpha \equiv \mathbb{P}($ Allergic $)=\mathbb{P}\left(Y_{1}-Y_{0}=-1\right)$

$$
\begin{aligned}
\underline{\alpha} & \leq \mathbb{P}\left(Y_{1}-Y_{0}=-1\right) \leq \bar{\alpha} \\
\left(1-p_{1}\right)+p_{0}-2 \bar{\alpha} & \leq \mathbb{P}\left(Y_{1}-Y_{0}=0\right) \leq\left(1-p_{1}\right)+p_{0}-2 \underline{\alpha} \\
\left(p_{1}-p_{0}\right)+\underline{\alpha} & \leq \mathbb{P}\left(Y_{1}-Y_{0}=1\right) \leq\left(p_{1}-p_{0}\right)+\bar{\alpha}
\end{aligned}
$$

https://fditraglia.shinyapps.io/binary-treatment-effect-bounds/

Sharp Bounds on the Distribution of Treatment Effects: Binary Outcome

The General Case: Fan \& Park (2010)

- Above we assumed that $\left(Y_{0}, Y_{1}\right)$ were both binary.
- We asked which joint distributions were not ruled out based on the marginals.
- Pointwise sharp bounds for $\mathbb{P}\left(Y_{1}-Y_{0}=-1\right), \mathbb{P}\left(Y_{1}-Y_{0}=0\right)$ and $\mathbb{P}\left(Y_{1}-Y_{0}=1\right)$.
- Special case of a general result: Fan and Park (2010).
- Same basic idea, but math is harder when $\left(Y_{0}, Y_{1}\right)$ may not be binary.
- This is a result you may actually use in practice!
- Explain their result without proving it.

Fan \& Park (2010) Bounds

Observables

- $F_{0}(y) \equiv \mathbb{P}\left(Y_{0} \leq y\right)$ and $F_{1}(y) \equiv \mathbb{P}\left(Y_{1} \leq y\right)$

Goal

- Sharp bounds for $F(\delta) \equiv \mathbb{P}\left(Y_{1}-Y_{0} \leq \delta\right)$

Notation

$$
\begin{aligned}
& \underline{F}(\delta) \equiv \sup _{y} F_{1}(y)-F_{0}(y-\delta) \\
& \bar{F}(\delta) \equiv 1+\left[\inf _{y} F_{1}(y)-F_{0}(y-\delta)\right]
\end{aligned}
$$

Theorem

- For any $\delta, 0 \leq \underline{F}(\delta) \leq F(\delta) \leq \bar{F}(\delta) \leq 1$. These bounds are (pointwise) sharp.

Left: $\delta=0$, Right: $\delta=2$

Left: $\delta=0$, Right: $\delta=3$

Left: $\delta=0$, Right: $\delta=-2$

All the bounds!

