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Roadmap for this Lecture

The Limits of Causal Inference
▶ (Y0, Y1) never observed for the same person; can’t learn their joint distribution.
▶ Quantities like Var(Y1 − Y0) or P(Y1 − Y0 > 0) are not identifiable.

Partial Identification
▶ Even if we can’t pin θ down exactly, we may be able to rule out many values.

Outline
1. Simplest example of partial identification.

2. Bounds on ATE while allowing for selection bias.

3. Bound the distribution of treatment effects.
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Simple Example: Reverse Regression Bounds
Population Linear Regression
▶ α and β are intercept and slope from population linear regression of Y on X
▶ Thus we can write Y = α + βX + U where we define

β ≡ Cov(X , Y )
Var(X ) , α ≡ E[Y ] − βE[X ], U ≡ Y − α − βX

▶ By construction we have E(XU) = E(U) = 0.

Point Identification
▶ If we could observe the whole population from which our sample was drawn, could

we uniquely determine the parameters of interest?
▶ Suppose we observe the joint distribution of (X , Y )
▶ This is enough information to calculate (α, β) explicitly: they are point identified.
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Classical Measurement Error
▶ Suppose we observe (Y , X̃ ) rather than (Y , X ), where X̃ = X + W
▶ W is classical measurement error: Cov(W , X ) = Cov(W , U) = E(W ) = 0
▶ Are α and β still point identified?

The Good News

E(X̃ ) = E(X + W ) = E(X )

Cov(X̃ , Y ) = Cov(X + W , Y ) = Cov(X , Y ) + Cov(W , Y )
= Cov(X , Y ) + Cov(W , α + βX + U)
= Cov(X , Y ) + Cov(W , U) + βCov(W , X )
= Cov(X , Y )

4 / 35



Are α and β still point identified?

The Bad News
▶ Because Var(W ) is not point identified, neither are α and β.

Var(X̃ ) = Var(X + W ) = Var(X ) + Var(W ) ≥ Var(X )

β ≡ Cov(X , Y )
Var(X ) = Cov(X̃ , Y )

Var(X̃ ) − Var(W )
, α ≡ E[Y ] − βE[X ] = E[Y ] − βE[X̃ ].

Partial Identification
▶ We can still bound β and hence α: the so-called reverse regression bounds
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A Lower Bound for β

▶ Since Cov(X , Y ) = Cov(X̃ , Y ),

Cov(X̃ , Y )
Var(X̃ )

= Cov(X , Y )
Var(X ) + Var(W ) = Cov(X , Y )/Var(X )

1 + Var(W )/Var(X ) = β

1 + Var(W )/Var(X ) .

▶ Since Var(W )/Var(X ) is non-negative, Cov(X̃ , Y )/Var(X̃ ) has same sign as β and∣∣∣∣∣Cov(X̃ , Y )
Var(X̃ )

∣∣∣∣∣ ≤ |β|.
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An Upper Bound for β

▶ Run the reverse regression X̃ on Y

Cov(X̃ , Y )
Var(Y ) = Cov(X , Y )

β2Var(X ) + Var(U) = βVar(X )
β2Var(X ) + Var(U) .

▶ Take the reciprocal:

Var(Y )
Cov(X̃ , Y )

= β + Var(U)
βVar(X ) = β

[
1 + Var(U)

β2Var(X )

]
.

▶ Factor in brackets greater than one, so Var(Y )/Cov(X̃ , Y ) has same sign as β and∣∣∣∣∣ Var(Y )
Cov(X̃ , Y )

∣∣∣∣∣ ≥ |β|.
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Reverse Regression Bounds

Terminology
▶ A bound is sharp if it cannot be improved, under our assumptions.
▶ A bound is tight if it is short enough to be useful in a practical example.

Assumptions
▶ Y = α + βX + U where E(XU) = E(U) = 0.
▶ Observe (X̃ , Y )
▶ X̃ = X + W with E(W ) = Cov(W , X ) = Cov(W , U) = 0

Sharp Bounds for β

▶ β lies between Cov(X̃ , Y )
Var(X̃ )

and Var(Y )
Cov(X̃ , Y )
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How tight are the reverse regression bounds?
▶ Let r denote the correlation between X̃ and Y . Then:

r2 ≡ Cov(X̃ , Y )2

Var(X̃ )Var(Y )
= Cov(X̃ , Y )

Var(X̃ )
· Cov(X̃ , Y )

Var(Y ) .

▶ Re-arranging, it follows that:

r2 · Var(Y )
Cov(X̃ , Y )

= Cov(X̃ , Y )
Var(X̃ )

.

▶ All else equal, bounds for β are tighter when X̃ and Y are strongly correlated:

Width =
∣∣∣∣∣ Var(Y )
Cov(X̃ , Y )

− Cov(X̃ , Y )
Var(X̃ )

∣∣∣∣∣ = (1 − r2)
∣∣∣∣∣ Var(Y )
Cov(X̃ , Y )

∣∣∣∣∣ .
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library(tidyverse)
library(broom) # for tidy()
set.seed(1066)

n <- 5000
X <- rnorm(n)
U <- rnorm(n)
W <- rnorm(n)

alpha <- 0.5
beta <- 1
Y <- alpha + beta * X + U
Xtilde <- X + W
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c(forward = cov(Xtilde, Y) / var(Xtilde),
truth = beta,
reverse = var(Y) / cov(Xtilde, Y)) |> round(2)

## forward truth reverse
## 0.51 1.00 1.95

# The regression we can't run in practice!
lm(Y ~ X) |> tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.489 0.0140 34.8 9.56e-238
## 2 X 1.02 0.0138 73.9 0
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# Reduce the correlation between X and Y, hence Xtilde and Y
Y <- alpha + beta * X + 3 * U

c(forward = cov(Xtilde, Y) / var(Xtilde),
truth = beta,
reverse = var(Y) / cov(Xtilde, Y)) |> round(2)

## forward truth reverse
## 0.52 1.00 9.31

# The regression we can't run in practice!
lm(Y ~ X) |> tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.466 0.0421 11.1 3.95e- 28
## 2 X 1.07 0.0414 25.7 7.45e-137
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Review of Potential Outcomes Framework

▶ See https://expl.ai/QHUAVRV and https://expl.ai/DWVNRZU for more details.
▶ Binary Treatment D ∈ {0, 1}
▶ Observed Outcome Y depends on Potential Outcomes (Y0, Y1) via

Y = (1 − D)Y0 + DY1 = Y0 + D(Y1 − Y0)

▶ Only one of (Y0, Y1) is observed for any given person at any given time.
▶ The unobserved potential outcome is a counterfactual, i.e. a what if?
▶ Average Treatment Effect: ATE ≡ E(Y1 − Y0).
▶ Treatment on the Treated: TOT ≡ E(Y1 − Y0|D = 1).
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Example: Y is Wage, D is Attend University

Counterfactuals
▶ D = 1 =⇒ Y0 is the wage you would have earned if you hadn’t attended.
▶ D = 0 =⇒ Y1 is the wage you would have earned if you had attended.

Treatment Effects
▶ ATE = E(Y1 − Y0) is the average effect of forcing a randomly-chosen person to

attend university.
▶ TOT = E(Y1 − Y0|D = 1) is the average effect of attending university for the sort

of people who choose to attend.

Problem: Selection Bias
▶ We don’t force randomly-chosen people to attend university!
▶ People who choose to attend are likely different in many ways
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Selection Bias
Naïve Comparison of Means

E(Y |D = 1) − E(Y |D = 0) = E(Y1|D = 1) − E(Y0|D = 0)

= E(Y1|D = 1) − E(Y0|D = 0) + E(Y0|D = 1) − E(Y0|D = 1)

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1) − E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

How does selection matter?
1. TOT is probably different from ATE: selection on gains.

2. Average value of Y0 (“outside option”) probably varies with D.
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How to solve the problem of selection bias?

Randomized Controlled Trial
▶ D |= (Y0, Y1) =⇒ E(Y0|D) = E(Y0) and E(Y1|D) = E(Y1) (video)
▶ Hence: TOT = ATE and Selection Bias = 0.

Other Approaches
▶ Selection-on-observables (chapter 4, video 1, video 2, slides, more slides)
▶ Instrumental Variables (chapter 5, tomorrow’s lecture)
▶ Regression Discontinuity (chapter 7, slides)
▶ Difference-in-differences (chapter 8, slides)

Partial Identification
Bound the ATE without using the above approaches while allowing for selection bias.
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Bounding the ATE when Y and D are Binary
▶ Example: Y = 1 if you earn a PhD, D = 1 if you attend an Ivy League University
▶ We know that D is not randomly assigned, and expect selection bias.

Starting point
▶ Assume that (Y , D) are observed.
▶ Since Y is binary we know that −1 ≤ ATE ≤ 1 without observing any data!

0 ≤ Y0 ≤ 1 and 0 ≤ Y1 ≤ 1 =⇒ 0 ≤ E(Y0) ≤ 1 and 0 ≤ E(Y1) ≤ 1

Shorthand

P11 ≡ P(Y = 1|D = 1) = E[Y |D = 1] = E[Y1|D = 1]
P10 ≡ P(Y = 1|D = 0) = E[Y |D = 0] = E[Y0|D = 0]

p ≡ P(D = 1) = E(D).
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Assumption-Free Bounds: Improving on −1 ≤ ATE ≤ 1
Y and D Are Observed
▶ =⇒ P11 ≡ E[Y1|D = 1], P10 ≡ E[Y0|D = 0], and p ≡ E(D) are observed

Iterated Expectations

E[Y1] = ED [E (Y1|D)] = P11p + E[Y1|D = 0](1 − p)

E[Y0] = ED [E(Y0|D)] = E[Y0|D = 1]p + P10(1 − p).

Bound the Unobserved Quantities
▶ E[Y1|D = 0] and E[Y0|D = 1] are between 0 and 1

pP11 ≤ E[Y1] ≤ pP11 + (1 − p)

(1 − p)P10 ≤ E[Y0] ≤ p + (1 − p)P10
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Assumption-Free Bounds: Width Equals 1
Previous Slide

pP11 ≤ E[Y1] ≤ pP11 + (1 − p)
(1 − p)P10 ≤ E[Y0] ≤ p + (1 − p)P10

Combine These

pP11 − (1 − p)P10 − p ≤ E[Y1 − Y0] ≤ pP11 − (1 − p)P10 + (1 − p).

Written More Compactly

q ≤ ATE ≤ (q + 1), q ≡ [pP11 − (1 − p)P10 − p]
▶ Half as wide as −1 ≤ ATE ≤ 1 but always includes zero
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Add Assumptions, Tighten the Bounds (Details in Lecture Notes)
Monotone Treatment Selection (MTS)
▶ Suppose we know direction of self-selection into treatment, e.g. positive:

E(Y1|D = 0) ≤ E(Y1|D = 1) and E(Y0|D = 0) ≤ E(Y0|D = 1).

▶ Positive MTS gives an improved upper bound for the ATE:

q ≤ ATE ≤ P11 − P10 ≤ (q + 1), q ≡ [pP11 − (1 − p)P10 − p]

Monotone Treatment Response (MTR)
▶ Suppose we know the direction of the causal effect: e.g. positive effect: Y1 > Y0.
▶ Positive MTR gives an improved lower bound for the ATE, namely zero:

0 ≤ ATE ≤ (q + 1)
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A Comparison of Bounds

▶ Preceding bounds are sharp under their respective assumptions. How tight are they?

▶ Example: suppose that 8% of Ivy League graduates earn a PhD versus 1.5% of the
general public and that 0.2% of people attend an Ivy League institution.

(P11 = 0.08, P10 = 0.015, p = 0.002) =⇒ q ≡ [pP11 − (1 − p)P10 − p] ≈ −0.017

No Asumptions: [q, q + 1] ≈ [−0.017, 0.983]
Positive MTS: [q, P11 − P10] ≈ [−0.017, 0.065]
Positive MTR: [0, q + 1] ≈ [0, 0.983]

Positive MTS + MTR: [0, P11 − P10] = [0, 0.065].

▶ Here positive MTR has little effect; positive MTS makes a dramatic difference!
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Bounding the Distribution of Treatment Effects

▶ Randomly assign D =⇒ ATE point identified: no selection bias!
▶ (Y0, Y1) never observed for same person; can’t learn joint distribution.
▶ Anything that depends on this joint distribution is not point identified.
▶ Examples: Var(Y1 − Y0), P(Y1 − Y0 > 0)
▶ Can we partially identify the distribution of treatment effect (Y1 − Y0)?
▶ Start with binary Y case; then consider the general case.
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Unobserved: Joint Distribution of (Y0, Y1), Distribution of (Y1 − Y0)

Y1
0 1

Y0
0 P(Doomed) P(Cured)
1 P(Allergic) P(Immune)

P(·)

(Y1 − Y0)
-1

Allergic

0

Doomed/Immune

1

Cured

▶ Dangerous disease, and dangerous treatment.
▶ Treatment helps some people (the “Cured”), harms others (the “Allergic”).
▶ Treatment has no effect on other people (the “Doomed” and “Immune”)
▶ Are more people helped than harmed?
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Observed: Marginal Distributions of Y0 and Y1

P(·)

Y00

(1 − p0)

1

p0

P(·)

Y10

(1 − p1)

1

p1

▶ Assume (Y , D) come from a randomized, double-blind, placebo-controlled trial.
▶ p0 is the share of untreated who recover; p1 is the share of treated who recover.
▶ The ATE is p1 − p0

▶ Try to bound what we can’t observe using what we can observe.

24 / 35



From Joint (Unobserved) to Marginals (Observed)

Recall: p0 ≡ P(Y0 = 1) and p1 ≡ P(Y1 = 1).

Y1
0 1

Y0
0 P(Doomed) P(Cured) =⇒ (1 − p0) = P(D) + P(C)
1 P(Allergic) P(Immune) =⇒ p0 = P(A) + P(I)

⇓ ⇓
(1 − p1) = P(D) + P(A) p1 = P(C) + P(I)

25 / 35



Shorthand: α ≡ P(Allergic)

Previous Slide

(1 − p0) = P(Doomed) + P(Cured)
p0 = P(Allergic) + P(Immune)

(1 − p1) = P(Doomed) + P(Allergic)
p1 = P(Cured) + P(Immune)

Rearranging

P(Immune) = p0 − α

P(Doomed) = (1 − p1) − α

P(Cured) = (p1 − p0) + α

▶ Everything is written in terms of observables (p0, p1) and α!
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Bounding α ≡ P(Allergic)

Previous Slide
▶ P(Immune) = p0 − α, P(Doomed) = (1 − p1) − α, P(Cured) = (p1 − p0) + α

Probabilities are between 0 and 1
▶ Apply Immune, Doomed, and Cured to bound α:

0 ≤ (p1 − p0) + α ≤ 1, 0 ≤ (1 − p1) − α ≤ 1, 0 ≤ p0 − α ≤ 1.

Simplify
▶ Rearrange the preceding, and combine with 0 ≤ α ≤ 1

max{−ATE, 0} ≤ α ≤ min{p0, (1 − p1)}, ATE = (p1 − p0).
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(Pointwise) Sharp Bounds for Distribution of Treatment Effects

Previous Slide
▶ P(Immune) = p0 − α, P(Doomed) = (1 − p1) − α, P(Cured) = (p1 − p0) + α

▶ max{−(p1 − p0), 0} ≤ α ≤ {p0, (1 − p1)}

Shorthand
▶ α ≡ max{−(p1 − p0), 0}, α ≡ min{p0, (1 − p1)}

Combine
▶ Recall that α ≡ P(Allergic) = P(Y1 − Y0 = −1)

α ≤ P(Y1 − Y0 = −1) ≤ α

(1 − p1) + p0 − 2α ≤ P(Y1 − Y0 = 0) ≤ (1 − p1) + p0 − 2α

(p1 − p0) + α ≤ P(Y1 − Y0 = 1) ≤ (p1 − p0) + α
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https://fditraglia.shinyapps.io/binary-treatment-effect-bounds/
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The General Case: Fan & Park (2010)

▶ Above we assumed that (Y0, Y1) were both binary.
▶ We asked which joint distributions were not ruled out based on the marginals.
▶ Pointwise sharp bounds for P(Y1 − Y0 = −1), P(Y1 − Y0 = 0) and P(Y1 − Y0 = 1).
▶ Special case of a general result: Fan and Park (2010).
▶ Same basic idea, but math is harder when (Y0, Y1) may not be binary.
▶ This is a result you may actually use in practice!
▶ Explain their result without proving it.
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Fan & Park (2010) Bounds
Observables
▶ F0(y) ≡ P(Y0 ≤ y) and F1(y) ≡ P(Y1 ≤ y)

Goal
▶ Sharp bounds for F (δ) ≡ P(Y1 − Y0 ≤ δ)

Notation

F (δ) ≡ sup
y

F1(y) − F0(y − δ)

F (δ) ≡ 1 +
[
inf
y

F1(y) − F0(y − δ)
]

Theorem
▶ For any δ, 0 ≤ F (δ) ≤ F (δ) ≤ F (δ) ≤ 1. These bounds are (pointwise) sharp.
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Left: δ = 0, Right: δ = 2
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Left: δ = 0, Right: δ = 3
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Left: δ = 0, Right: δ = −2
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All the bounds!
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