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Recap of Last Lecture

Y0 = µ0 + U0

Y1 = µ1 + U1

D = 1{γ0 + γ1Z > V }
Y = (1 − D)Y0 + DY1

Z ∼ Bernoulli(q) |= (V , U0, U1) V
U0
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The Good:
▶ Simple model with instrument Z ∈ {0, 1} and selection into treatment D ∈ {0, 1}.
▶ Treatment effects are heterogeneous and vary with “resistance” to treatment V .
▶ µ0, µ1, σ0ρ0, σ1ρ1, q, γ0 and γ1 point identified; Heckman 2-step Estimator.
▶ Beyond LATE: ATE, TOT, and TUT depend only on point identified parameters. . .
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Recap of Last Lecture

ATE = µ1 − µ0

LATE = ATE − (σ1ρ1 − σ0ρ0)
[

φ(γ0 + γ1) − φ(γ0)
Φ(γ0 + γ1) − Φ(γ0)

]
= E(Y |Z = 1) − E(Y |Z = 0)

E(D|Z = 1) − E(D|Z = 0)

TOT = ATE − (σ1ρ1 − σ0ρ0)
[ (1 − q)φ(γ0) + qφ(γ0 + γ1)

(1 − q)Φ(γ0) + qΦ(γ0 + γ1)

]

TUT = ATE + (σ1ρ1 − σ0ρ0)
[ (1 − q)φ(γ0) + qφ(γ0 + γ1)

(1 − q){1 − Φ(γ0)} + q{1 − Φ(γ0 + γ1)}

]
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The Bad
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Under Normality:
1. E (Y1 − Y0|V ) is necessarily linear.

2. Unbounded ATEs for people with “extreme” values of V .
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Relaxing Normality: the Latent Index Selection Model (LISM)

Y0 = µ0 + U0

Y1 = µ1 + U1

D = 1{γ0 + γ1Z > V }

Y = (1 − D)Y0 + DY1

Z ∼ Bernoulli(q) |= (V , U0, U1)
E(V ) = E(U0) = E(U1) = 0

The Good:
▶ Simple model with instrument Z ∈ {0, 1} and selection into treatment D ∈ {0, 1}.
▶ Treatment effects are heterogeneous and vary with “resistance” to treatment V .
▶ No longer assume that (U0, U1, V ) are jointly normal; mean zero WLOG.

Questions
1. How does this compare to the LATE model?

2. Is this model identified? If so can we estimate it?

3. If we can estimate it, does it allow us to go beyond late to ATE, TUT, TOT etc?
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Assumptions of the Latent Index Selection Model

Treatment Take-up
D(Z ) = 1{γ0 + γ1Z > V }

Instrument Relevance
P(γ0 > V ) ̸= P(γ0 + γ1 > V )

Instrument Exogeneity
Z |= (V , Y0, Y1)

▶ γ0 + γ1Z is called the “latent index”
▶ We used relevance implicitly in our Heckman Two-step procedure.
▶ Z |= (V , U0, U1), Y0 = µ0 + U0, Y1 = µ1 + U1 =⇒ exogeneity
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Potential Treatments

▶ We described LATE model using “compliance type” variable T ∈ {n, a, c, d}
▶ Equivalently, can describe using “potential treatments,” a binary encoding: (D0, D1)

Never-taker: T = n ⇐⇒ D(Z ) = 0 ⇐⇒ (D0 = 0, D1 = 0)
Always-taker: T = a ⇐⇒ D(Z ) = 1 ⇐⇒ (D0 = 1, D1 = 1)

Complier: T = c ⇐⇒ D(Z ) = Z ⇐⇒ (D0 = 0, D1 = 1)
Defier: T = d ⇐⇒ D(Z ) = (1 − Z ) ⇐⇒ (D0 = 1, D1 = 0)

No Defiers aka Monotonicity
P(T = d) = 0 ⇐⇒ either D0 ≤ D1 or D1 ≤ D0 with probability one.

Unconfounded Type
Z |= T ⇐⇒ Z |= (D0, D1)
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(Slightly) Stronger Version of LATE Assumptions

Existence of Compliers in terms of Observables
P(T = c) > 0 ⇐⇒ E[D|Z = 1] ̸= E[D|Z = 0]

No Defiers in terms of Potential Treatments
Either D0 ≤ D1 or D1 ≤ D0 with probability one.

Replacement for Mean Exclusion
Z |= (Y0, Y1, D0, D1)

▶ Equivalent to Z |= (Y0, Y1, T )
▶ Implies Z |= (D0, D1), which is equivalent to unconfounded type.
▶ Implies but is slightly stronger than mean exclusion.
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These two models are equivalent!

Latent Index Selection Model
1. D = 1{γ0 + γ1Z > V }

2. P(γ0 > V ) ̸= P(γ0 + γ1 > V )

3. Z |= (Y0, Y1, V )

Local Average Treatment Effects Model
1. Either D0 ≤ D1 or D1 ≤ D0 wp 1.

2. E[D|Z = 1] ̸= E[D|Z = 0]

3. Z |= (Y0, Y1, D0, D1)

LISM Assumptions ⇒ LATE Assumptions
▶ Straightforward. Details follow on the next slide.

LATE Assumptions ⇒ LISM Assumptions
▶ A bit trickier. See: Glickman & Normand (2000) and Vytacil (2002)
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https://www.treatment-effects.com/Vytlacil-2002.pdf


Z |= (Y0, Y1, D0, D1)
▶ D = 1{γ0 + γ1Z > V } =⇒ (D0, D1) are a function of V .
▶ In particular: D0 ≡ D(Z = 0) = 1{γ0 > V }, D1 ≡ D(Z = 1) = 1{γ0 + γ1 > V }
▶ The LISM assumes Z |= (Y0, Y1, V ), so by Decomposition: Z |= (Y0, Y1, D0, D1).

P(D = 1|Z = 1) ̸= P(D = 1|Z = 0)
▶ The LISM assumes that P(γ0 > V ) ̸= P(γ0 + γ1 > V )
▶ P(D = 1|Z = 0) = P(γ0 > V ), P(D = 1|Z = 1) = P(γ0 + γ1 > V )

Either D0 ≤ D1 or D1 ≤ D0 with probability one.
▶ P(γ0 > V ) ̸= P(γ0 + γ1 > V ) rules out γ1 = 0.
▶ γ1 > 0 ⇒ γ0 + γ1 > γ0 ⇒ P(D0 ≤ D1) = P(1{γ0 > V } ≤ 1{γ0 + γ1 > V }) = 1
▶ γ1 < 0 ⇒ γ0 + γ1 < γ0 ⇒ P(D1 ≤ D0) = P(1{γ0 + γ1 > V } ≤ 1{γ0 > V }) = 1
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The Generalized Roy Model

Model

Y0 = µ0(X ) + U0

Y1 = µ1(X ) + U1

Y = (1 − D)Y0 + DY1

Assumptions
1. D = 1{ν(X , Z ) > V }

2. Z |= (Y0, Y1, V )|X

3. Distribution of V |X = x is
continuous.

▶ Covariates X : observed heterogeneity; (U0, U1, V ): unobserved heterogeneity
▶ U0 ≡ Y0 − E(Y0|X ); U1 ≡ Y1 − E(Y1|X ) so both are mean zero.
▶ Z may not be be binary; unknown function ν(·)
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Monotonicity

Model

Y0 = µ0(X ) + U0

Y1 = µ1(X ) + U1

Y = (1 − D)Y0 + DY1

Assumptions
1. D = 1{ν(X , Z ) > V }

2. Z |= (Y0, Y1, V )|X

3. Distribution of V |X = x is
continuous.

▶ Holding X fixed, we can shift ν(X , Z ) by changing Z without affecting V .
▶ Why? Conditional on X , Z and V are independent and V doesn’t enter ν(·).
▶ For a given shift in Z , two people with the same observed characteristics X

experience the same shift in ν(·) regardless of whether they have different
resistance to treatment V
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Normalization: Transform V to Uniform(0, 1)

▶ For any continuous RV W with CDF H, W̃ ≡ H(W ) ∼ Uniform(0, 1)
▶ Condition on (X = x); let Fx be the conditional dist of V |X = x (continuous)
▶ Remember: conditional on X , Z and V are independent!

D|(X = x) = 1 {ν(x , Z ) > V } = 1{Fx (ν(x , Z )) > Fx (V )}
= 1{Fx (ν(x , Z )) > Ṽ } = 1{g(x , Z ) > Uniform}

▶ If W ∼ Uniform(0, 1) then P(W < c) = c.

π(x , z) ≡ P(D = 1|X = x , Z = z) = P(g(x , z) > Uniform) = g(x , z)

▶ WLOG normalize V |X = x ∼ Uniform(0, 1) =⇒ V |(X = x , Z = z) also uniform
▶ The function ν(·) becomes the propensity score π(X , Z ).
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Generalized Roy Model

Model

Y0 = µ0(X ) + U0

Y1 = µ1(X ) + U1

Y = (1 − D)Y0 + DY1

π(X , Z ) ≡ P(D = 1|X , Z )

Assumptions
1. D = 1{π(X , Z ) > V }

2. Z |= (Y0, Y1, V )|X

3. V |(X = x , Z = z) ∼ Uniform(0, 1)
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ATE, TOT and TUT in the Generalized Roy Model

ATE(x) ≡ E[Y1 − Y0|X = x ] = µ1(x) − µ0(x)
TOT(x) ≡ E[Y1 − Y0|X = x , D = 1] = µ1(x) − µ0(x) + E[U1 − U0|X = x , D = 1]
TUT(x) ≡ E[Y1 − Y0|X = x , D = 0] = µ1(x) − µ0(x) + E[U1 − U0|X = x , D = 0]

▶ Same definitions as before, but now we are conditioning on X .
▶ Average over the distribution of X to obtain unconditional versions.
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Policy-Relevant Treatment Effects (PRTEs)

PRTE(x) ≡ E[Yi |Xi = x , New Policy] − E[Yi |Xi = x , Old Policy]
E[Di |Xi = x , New Policy] − E[Di |Xi = x , Old Policy]

▶ Compare a new policy to old one; average over X to obtain unconditional version.
▶ Policy ≡ change in the propensity score π(Z , X ) that changes who is treated

without affecting (Y1, Y0, V ).
▶ PRTE is the average change in Y per person shifted into treatment.
▶ At some values of x , people may be shifted out of treatment
▶ A LATE is a PRTE, but a given LATE may not answer your policy question!
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Marginal Treatment Effects (MTEs)

Textbook Normal Model
▶ Any treatment effect of interest can be calculated from (γ0, γ1, µ0, µ1, δ).
▶ These parameters are identified: Heckman Two-step approach

Generalized Roy Model
▶ Any treatment effect can be calculated as from knowledge of the Marginal

Treatment Effect (MTE) function

MTE(v , x) ≡ E(Y1 − Y0|X = x , V = v)

▶ How do treatment effects vary with observed (x) and unobserved (v) heterogeneity?
▶ No unobserved heterogeneity =⇒ MTE is constant as a function of v .
▶ Like textbook model parameters, MTE does not depend on the instrument Z .
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From MTE Function to Target Parameters
Target Parameters
▶ ATE, TOT, TUT, PRTEs, LATE, etc.

General Approach
▶ Any of the above (and more!) can be computed as a weighted average of the MTE.

Example: ATE from MTE

ATE(x) ≡ E[Y1 − Y0|X = x ] = EV |X=x [E(Y1 − Y0|X = x , V = v)]

= EV |X=x [MTE(X , V )] =
∫

MTE(x , v) dFV |X=x (v)

=
∫ 1

0
MTE(v , x) × 1 dv

▶ Follows because V |X = x ∼ Uniform(0, 1).
▶ See Mogstad & Torgovitsky (2018) for other weighting functions.
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https://treatment-effects.com/Mogstad-Torgovitsky-2018.pdf


How can we identify the MTE function?
Notation

m(p, x) ≡ E [Y |π(X , Z ) = p, X = x ]
m0(p, x) ≡ E [Y |π(X , Z ) = p, X = x , D = 0]
m1(p, x) ≡ E [Y |π(X , Z ) = p, X = x , D = 1]

Two Approaches
1. Local Instrumental Variables

MTE(p, x) = ∂

∂p m(p, x)

2. Separate Estimation

MTE(p, x) = [m0(p, x) − m1(p, x)] + p ∂

∂p m1(p, x) + (1 − p) ∂

∂p m0(p, x)
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The Local Instrumental Variables Approach

Can Show that

m(p, x) ≡ E [Y |π(X , Z ) = p, X = x ] = µ0(x) + p[µ1(x) − µ0(x)] + K (p, x)

K (p, x) ≡ pE (U1 − U0|V ≤ p, X = x) =
∫ p

0
E (U1 − U0|X = x , V = v) dv .

Differentiating with respect to p

∂

∂p E [Y |P(X , Z ) = p, X = x ] = µ1(x) − µ0(x) + ∂

∂p K (p, x)

= µ1(x) − µ0(x) + E (U1 − U0|X = x , V = p)
≡ MTE(p, x)

▶ 2nd-to-last equality: definition of K (p, x) and Fundamental Theorem of Calculus.

20 / 31



Theory Versus Practice

▶ Both local IV and separate estimation approaches involve non-parametric regression
of Y on X and the propensity score.

▶ This is extremely challenging in practice even if X is low-dimensional!
▶ Need variation in propensity score for fixed X ; this comes from Z .
▶ To non-parametrically identify the full MTE function, need an instrument that

allows π(X , Z ) to vary over the full range [0, 1] for any value of X !
▶ In practice, researchers make simplifying assumptions and carry out semi-parametric

or flexible parametric estimation.
▶ This invariably involves interpolation / extrapolation to some degree!
▶ See Mogstad & Torgovitsky (2018) for a partial identification approach.
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Cornelissen et al (QJE; 2018) - Who Benefits from Universal Child Care?

Background
▶ Major policy question: causal effect of early childhood interventions, including

state-provided day care.
▶ Some studies of highly-targeted programs (e.g. Head Start / Perry Preschool) find

sizable positive effects.
▶ Evidence for universal provision is mixed: some find sizable negative effects

(Quebec study).
▶ How to rationalize these conflicting findings?
▶ Maybe targeted programs enroll children most likely to benefit, i.e. those with an

adverse home environment.
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https://treatment-effects.com/Cornelissen-et-al-2018.pdf


Cornelissen et al (QJE; 2018) - Who Benefits from Universal Child Care?

This Study
▶ Study provision of universal preschool/childcare in Germany using MTE approach.
▶ Treatment is early attendance, defined as attending for at least three years.
▶ Instrument is a staggered roll-out of 1990s policy reform that affected the number

of slots for publicly-provided childcare in different places.
▶ Main outcome is a universal school readiness exam administered at age 6.
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Cornelissen et al (QJE; 2018) - Who Benefits from Universal Child Care?

Main Findings
▶ Evidence of reverse selection on gains from observed characteristics.
▶ Minorities benefit most from childcare but are least likely to enroll.
▶ Similar selection on unobservables: “high resistance” children benefit most.
▶ Effect is so strong that TUT > ATE > 0 > TOT!
▶ Evidence that treatment effect heterogeneity comes from Y0 rather than Y1.

The Rest of the Lecture
▶ We’ll focus on their implementation of MTE methods.
▶ Also talk a bit about policy counterfactuals.
▶ See the paper for more details.
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A Simplified MTE Model

Additive Separability
▶ E[U0|V , X ] = E[U0|V ] and E[U1|V , X ] = E[U1|V ]
▶ Changing X only affects the intercept of the MTE, viewed as a function of v .
▶ Still allows V to vary with X .

Linearity
▶ E[Y0|X = x ] = x ′β0 and E[Y1|X = x ] = x ′β1

▶ Restricts the way that covariates affect the intercept of the MTE function.
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Implications of Separability and Linearity
MTE Function

MTE(p, x) = µ1(x) − µ0(x) + E (U1 − U0|X = x , V = p)
= µ1(x) − µ0(x) + E (U1 − U0|V = p) (Separability)
= x ′(β1 − β0) + E (U1 − U0|V = p) (Linearity)

= x ′(β1 − β0) + d
dp K (p) (Linearity)

Observed Conditional Mean Function

E[Y |π(X , Z ) = p, X = x ] = µ0(x) + p[µ1(x) − µ0(x)] + K (p, x)
= x ′β0 + x ′(β1 − β0)p + K (p)

▶ This is a semi-parametric model: linear regression plus unknown function K (p)
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A Parametric Approximation

▶ Could choose to carry out semi-parametric estimation, but Cornelissen et al (2018)
take a simpler approach.

▶ Model K (p) as a polynomial in p; don’t include constant or first-order term since
they’re already in the regression:

E[Y |π(X , Z ) = p, X = x ] = x ′β0 + x ′(β1 − β0)p +
J∑

j=2
αjpj

▶ If we knew p, we could run this regression; unfortunately we don’t know it!
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Implementation

1. Run probit/logit of Di on (Xi , Zi) to estimate the propensity scores p̂i .

2. Estimate β0, β1, α from the following regression:

Yi = Xiβ0 + X ′
i (β1 − β0)p̂i +

J∑
j=2

αj p̂j
i + ϵi

3. Construct the estimated MTE function as follows:

M̂TE(p, x) = ∂

∂p

x ′β̂0 + x ′(β̂1 − β̂0)p +
J∑

j=2
α̂jpj


4. Take weighted average of M̂TE(p, x) to construct desired target parameter.
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Some Specifics from Cornelissen et al (2018)

▶ Add municipality (R) and exam cohort (T ) dummies:

Y = Xβ0 + αR + τT + X (β1 − β0)p̂ +
J∑

j=1
αj p̂j + ϵ

▶ Experiment with J = 2, J = 3, J = 4, and a semi-parametric specification.
▶ Remember: we differentiate to get the MTE, so J = 2 is a linear specification for

E(U1 − U0|V ). Sound familiar?
▶ Similar results across the different specifications of K (p) in this case.

29 / 31



Treatment effects increase with resistance to treatment!
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Policy Counterfactuals
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