Marginal Treatment Effects Part I

Francis DiTraglia

Oxford Economics Summer School

Treatment Effects: The Big Picture

The Best We Can Do?

- Ideally, want to learn *individual treatment effects* but we can't: fundamental problem of causal inference!
- Barring that, want to learn distribution of treatment effects, but we can't: fundamental problem of causal inference! (Can bound them: Notes Chapter 3)
- ATE (or conditional ATE) usually considered best we can do. Identified by "gold standard" placebo controlled, randomized trial with perfect compliance.

We can't force people!

- Even when treatment is randomly assigned, can't force people to take it: randomized encouragement design
- Intent-to-treat (ITT) effect: causal effect of offering treatment. "Diluted" by people offered who don't take (typically assume exclusion restriction).

Better LATE than Nothing?

- IV allows us to go beyond ITT effects, but if treatment effects are heterogenous, we recover the LATE: average effect for *compliers*
- ▶ Is the LATE an interesting quantity? Maybe, maybe not.
- Recently: lots of interest in extrapoLATE-ing "beyond LATE" to more interesting causal parameters. That is the topic of this lecture and the next one
- Many issues here, but most important: what causal parameters should we be interested in and why?

Two Key Questions

- 1. What is it *possible* to learn form data? (Identification)
- 2. What do we plan to *do* with our causal effect? (Less commonly asked)

Causal Effects are for Decisionmaking

Example Causal Question

▶ What is the causal effect of cognitive behavioral therapy (CBT) on anxiety?

Individual's Decision Problem

- ▶ You have anxiety, and need to decide whether to get CBT (D = 1) or not (D = 0). Weigh the costs against benefits. Chamberlain (2011)
- You are probably interested in the ATE or conditional ATE: on average, what is the treatment effect for a person like me?
- Side point: experiment only tells you useful information under a *consistency condition*, i.e. *choosing* treatment has the same effect as *being allocated* treatment.
- Crucial, if obvious, feature: you can force yourself to take treatment

Causal Effects are for Decisionmaking

Example Causal Question

▶ What is the causal effect of cognitive behavioral therapy (CBT) on anxiety?

Policymaker's Decision Problem

- Should we expand access to CBT on the UK National Health Service (NHS)? Weigh the costs against the benefits.
- We can't force people with anxiety to get CBT by making it more widely available so the ATE isn't the relevant quantity.
- If we expand access, some more people will be treated. Policy question is: what is the average benefit, per additional person enrolled, of expanding access?
- When treatment is voluntary, it becomes crucial for policy analysis to understand how treatment effects may correlate with willingness to take up treatment.

Causal Effects for Policymaking? TOT and TUT Effects

Treatment on the Treated (TOT aka ATT)

- Existing program; only some of those eligible choose to enroll. If we eliminated the program, how much worse off would current participants be?
- ► Average effect of a program or policy for those who currently choose to enroll.
- Equals LATE under one-sided non-compliance: no always-takers

Treatment on the Untreated (TUT aka ATU)

- Existing program; only some of those eligible choose to enroll. If we forced all non-participants to enroll, how much better off would they be?
- > Average effect of a program of policy for those who currently choose **not** to enroll.
- ► Equals LATE under one-sided non-compliance: no never-takers
- E.g. increase in UK minimum school-leaving age from 15 to 16 (September 1972).

Beyond LATE in a "Textbook" Model

$$\begin{array}{ll} Y_0 = \mu_0 + U_0 & Z \sim \text{Bernoulli}(q) \parallel (V, U_0, U_1) \\ Y_1 = \mu_1 + U_1 & \begin{bmatrix} V \\ U_0 \\ Y = (1 - D)Y_0 + DY_1 & \begin{bmatrix} V \\ U_0 \\ U_1 \end{bmatrix} \sim \text{Normal} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \sigma_0 \rho_0 & \sigma_1 \rho_1 \\ \sigma_0^2 & \sigma_{01} \\ & & \sigma_1^2 \end{bmatrix} \right)$$

- Heckman, Tobias & Vytlacil (2001), Angrist (2004)
- ▶ Treatment effects $(Y_1 Y_0)$ are heterogeneous, ATE = $\mu_1 \mu_0$.
- Selection into treatment up D depends on:
 - 1. Binary instrument / encouragement Z
 - 2. Heterogeneous cost / resistance to treatment V (free normalization)
- Closed-form expressions: compare ATE, LATE, TOT and TUT.

```
Simulation: \mu_1 = \mu_0 = 0, \sigma_0 = \sigma_1 = 1, \sigma_{01} = 1/2
```

```
library(mvtnorm)
library(tidyverse)
rho0 < -0.5
rho1 < - 0.2
S \leftarrow matrix(c(1, rho0, rho1,
               rho0, 1, 0.5,
               rho1, 0.5, 1), 3, 3, byrow = TRUE)
set.seed(1983)
sims <- rmvnorm(5e3, sigma = S)</pre>
colnames(sims) <- c('V', 'Y0', 'Y1')</pre>
sims <- as tibble(sims)</pre>
sims <- sims >
  mutate(Delta = Y1 - Y0)
```

sims

##	# A ti	bble:	5,000 x	4	
##		V	YO	Y1	Delta
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1 -0.	122	-0.399	1.08	1.48
##	2 -0.	506	-1.10	1.49	2.59
##	30.	00457	-0.121	-0.456	-0.335
##	4 -0.	549	-0.248	-0.899	-0.651
##	51.	95	-0.0948	-0.675	-0.580
##	60.	561	0.112	-0.615	-0.726
##	7 -0.	238	-0.439	-1.53	-1.10
##	8 -1.	46	-1.23	-0.0548	1.17
##	9 -0.	336	-0.891	1.53	2.42
##	10 -0.	845	-0.274	0.637	0.911
##	# i 4,	,990 ma	ore rows		

```
DV_scatter <- sims |>
  ggplot(aes(x = V, y = Delta)) +
  geom_point() +
  geom_smooth()
Dhist <- sims |>
  ggplot(aes(x = Delta)) +
  geom_histogram()
```

library(gridExtra) grid.arrange(DV_scatter, Dhist, ncol = 2)

Any Parameter values

 \blacktriangleright Δ is normally distributed; Δ and V are linearly dependent (jointly normal).

These Parameter Values

 \blacktriangleright ATE is zero; higher cost/resistance $V \implies$ lower treatment effect Δ

Properties of the Textbook Model

$$\begin{array}{ll} Y_0 = \mu_0 + U_0 & Z \sim \operatorname{Bernoulli}(q) \perp (V, U_0, U_1) \\ Y_1 = \mu_1 + U_1 & \begin{bmatrix} V \\ U_0 \\ Y = (1 - D)Y_0 + DY_1 & \begin{bmatrix} V \\ U_0 \\ U_1 \end{bmatrix} \sim \operatorname{Normal} \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \sigma_0 \rho_0 & \sigma_1 \rho_1 \\ \sigma_0^2 & \sigma_{01} \\ & & \sigma_1^2 \end{bmatrix} \right)$$

Implications

$$\Delta \equiv Y_1 - Y_0 \sim \text{Normal}(\mu_1 - \mu_0, \sigma_0^2 + \sigma_1^2 - 2\sigma_{01})$$

 $\blacktriangleright \operatorname{Cov}(\Delta_i, V_i) = \operatorname{Cov}(Y_{1i}, V_i) - \operatorname{Cov}(Y_{0i}, V_i) = \sigma_1 \rho_1 - \sigma_0 \rho_0$

LATE for the Textbook Model

- LATE = average effect for *compliers*: people induced to take treatment by Z.
- Since $D = 1(\gamma_0 + \gamma_1 Z > V)$, compliers are defined by $\gamma_0 \leq V < \gamma_0 + \gamma_1$
- **Depends on the particular instrument** through γ_0 , γ_1

```
gamma0 <- -1
gamma1 <- 1.5
sims <- sims |>
mutate(complier = (V >= gamma0) & (V < gamma0 + gamma1))</pre>
```

Who's a complier when $\gamma_0 = -1$ and $\gamma_1 = 1.5$?

sims

##	#At	tibble:	5,000 x	5		
##		V	YO	Y1	Delta	complier
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<lgl></lgl>
##	1 -(0.122	-0.399	1.08	1.48	TRUE
##	2 -0	0.506	-1.10	1.49	2.59	TRUE
##	3 (0.00457	-0.121	-0.456	-0.335	TRUE
##	4 -(0.549	-0.248	-0.899	-0.651	TRUE
##	5 3	1.95	-0.0948	-0.675	-0.580	FALSE
##	6 (0.561	0.112	-0.615	-0.726	FALSE
##	7 -(0.238	-0.439	-1.53	-1.10	TRUE
##	8 -1	1.46	-1.23	-0.0548	1.17	FALSE
##	9 -(0.336	-0.891	1.53	2.42	TRUE
##	10 -0	0.845	-0.274	0.637	0.911	TRUE
##	# i 4	1,990 mc	ore rows			

Whos's a complier when $\gamma_0 = -1$, $\gamma_1 = 1.5$? ggplot(sims, aes(x = V, fill = complier)) +

Share of compliers
pnorm(gamma0 + gamma1) - pnorm(gamma0)

[1] 0.5328072

Who's a complier when $\gamma_0 = -1$ and $\gamma_1 = 1.5$? ggplot(sims, aes(x = V, y = Delta, col = complier)) + geom_point(alpha = 0.4)

Average Treatment Effects by Complier Status: $\gamma_0=-1,~\gamma_1=1.5$

```
sims |>
group_by(complier) |>
summarize(mean(Y1 - Y0)) |>
knitr::kable(digits = 3)
```

complier	mean(Y1 - Y0)
FALSE	-0.083
TRUE	0.068

Different Instrument, Different LATE: $\gamma_0 = -1$, Varying γ_1

```
get_LATE <- function(gamma1) {</pre>
  sims >
    mutate(complier = (V \ge -1) \& (V < -1 + gamma1)) >
    filter(complier) |>
    summarize(LATE = mean(Y1 - Y0)) >
    pull()
}
gamma1_seq <- c(0.75, 1, 1.25, 1.5, 1.75, 2)
LATE <- map_dbl(c(0.75, 1, 1.25, 1.5, 1.75, 2), get LATE)
rbind(gamma1_seq, LATE) > knitr::kable(digits = 2)
```

gamma1_seq	0.75	1.00	1.25	1.50	1.75	2
LATE	0.21	0.15	0.11	0.07	0.03	0

TOT and TUT in the Textbook Model

$$\begin{aligned} \mathsf{TOT} &\equiv \mathbb{E}(\Delta | D = 1) \\ &= \mathbb{E}(\Delta | D = 1, Z = 0) \mathbb{P}(Z = 0 | D = 1) + \mathbb{E}(\Delta | D = 1, Z = 1) \mathbb{P}(Z = 1 | D = 1) \\ &= \underbrace{\mathbb{E}(\Delta | V < \gamma_0)}_{\mathsf{Always-takers}} \times (1 - q_1) + \underbrace{\mathbb{E}(\Delta | V < \gamma_0 + \gamma_1)}_{\mathsf{Always-takers}} \times q_1 \end{aligned}$$

$$\begin{aligned} \mathsf{TUT} &\equiv \mathbb{E}(\Delta | D = 0) \\ &= \mathbb{E}(\Delta | D = 0, Z = 0) \mathbb{P}(Z = 0 | D = 0) + \mathbb{E}(\Delta | D = 0, Z = 1) \mathbb{P}(Z = 1 | D = 0) \\ &= \underbrace{\mathbb{E}(\Delta | V > \gamma_0)}_{\mathsf{Never-takers \& Compliers}} \underbrace{(1 - q_0) + \underbrace{\mathbb{E}(\Delta | V > \gamma_0 + \gamma_1)}_{\mathsf{Never-takers}} q_0 \end{aligned}$$

TOT and TUT in the Textbook Model

- ► TOT is a weighted average of $\mathbb{E}(\Delta | V < \gamma_0)$ and $\mathbb{E}(\Delta | V < \gamma_0 + \gamma_1)$.
- ► TUT is a weighted average of $\mathbb{E}(\Delta | V > \gamma_0)$ and $\mathbb{E}(\Delta | V > \gamma_0 + \gamma_1)$.
- ▶ Need to be able to calculate $\mathbb{E}(\Delta|V > c)$ and $\mathbb{E}(\Delta|V < c)$.
- ▶ TOT and TUT depend on Z through γ_0 and γ_1 : defines "the treated"

```
## # A tibble: 5,000 x 6
##
           V
                 YO
                    Y1 Delta
                                   Z treated
##
       <dbl> <dbl> <dbl> <dbl> <int> <lgl>
   1 -0.122 -0.399 1.08 1.48
                                   0 FALSE
##
##
   2 - 0.506 - 1.10 1.49 2.59
                                   0 FALSE
   3 0.00457 -0.121 -0.456
                          -0.335
                                   0 FALSE
##
                                   0 FALSE
##
   4 -0.549 -0.248 -0.899
                          -0.651
##
   5 1.95 -0.0948 -0.675 -0.580
                                   1 FALSE
##
   6 0.561 0.112 -0.615 -0.726
                                   0 FALSE
##
  7 -0.238
           -0.439 -1.53 -1.10
                                   1 TRUE
##
   8 -1.46
            -1.23 -0.0548 1.17
                                   1 TRUE
##
   9 - 0.336
            -0.891 1.53
                           2.42
                                   1 TRUE
```

Who's treated if q = 0.5, $\gamma_0 = -1$ and $\gamma_1 = 1.5$? ggplot(sims, aes(x = V, y = Delta, col = treated)) + geom_point(alpha = 0.4)

TOT and TUT Effects: q = 0.5, $\gamma_0 = -1$ and $\gamma_1 = 1.5$

```
sims |>
group_by(treated) |>
summarize(mean(Y1 - Y0)) |>
knitr::kable(digits = 3)
```

treated	mean(Y1 - Y0)
FALSE	-0.170
TRUE	0.223

b Different values of q, γ_0 , γ_1 , would give different TUT and TOT.

In this example we have selection on gains: TUT < ATE < TOT</p>

Analytical Results for the Textbook Model

$$ATE = \mu_1 - \mu_0$$

$$LATE = ATE - (\sigma_1 \rho_1 - \sigma_0 \rho_0) \left[\frac{\varphi(\gamma_0 + \gamma_1) - \varphi(\gamma_0)}{\Phi(\gamma_0 + \gamma_1) - \Phi(\gamma_0)} \right]$$

$$\mathsf{TOT} = \mathsf{ATE} - (\sigma_1 \rho_1 - \sigma_0 \rho_0) \left[\frac{(1-q)\varphi(\gamma_0) + q\varphi(\gamma_0 + \gamma_1)}{(1-q)\Phi(\gamma_0) + q\Phi(\gamma_0 + \gamma_1)} \right]$$

$$\mathsf{TUT} = \mathsf{ATE} + (\sigma_1 \rho_1 - \sigma_0 \rho_0) \left[\frac{(1-q)\varphi(\gamma_0) + q\varphi(\gamma_0 + \gamma_1)}{(1-q)\{1-\Phi(\gamma_0)\} + q\{1-\Phi(\gamma_0 + \gamma_1)\}} \right]$$

Example: $\sigma_0 = \sigma_1 = 1$ and q = 1/2

Formulas Simplify ($\delta \equiv \rho_1 - \rho_0$)

$$\mathsf{LATE} = -\delta \left[\frac{\varphi(\gamma_0 + \gamma_1) - \varphi(\gamma_0)}{\Phi(\gamma_0 + \gamma_1) - \Phi(\gamma_0)} \right]$$

$$\mathsf{TOT} = -\delta \left[\frac{\varphi(\gamma_0) + \varphi(\gamma_0 + \gamma_1)}{\Phi(\gamma_0) + \Phi(\gamma_0 + \gamma_1)} \right]$$

$$\mathsf{TUT} = \delta \left[\frac{\varphi(\gamma_0) + \varphi(\gamma_0 + \gamma_1)}{\{1 - \Phi(\gamma_0)\} + \{1 - \Phi(\gamma_0 + \gamma_1)\}} \right]$$

▶ In the practical session you will reproduce some plots from Angrist (2004).

First-stage effect 0.07, q = 1/2, $\delta = -0.1$

P(D=1|Z=0)

Why do we care about any of this?

- ▶ In the textbook model we can see how the ATE, LATE, TOT and TUT compare.
- > The key parameters of the textbook model **are point identified**.
- This allows us to use data to go beyond LATE to other causal effects: ATE, TOT and TUT, and more (next time).
- Next Time: Marginal Treatment Effects methods are a modern "update" of this textbook model.

Heckman Two-step Estimator

We will show that:

$$\mathbb{E}[Y|D=1, Z=z] = \mu_1 + \delta_1 \mathbb{E}(V|D=1, Z=z)$$
$$\mathbb{E}(V|D=1, Z=z) = \frac{-\varphi(\gamma_0 + \gamma_1 z)}{\Phi(\gamma_0 + \gamma_1 z)}$$

$$\mathbb{E}[Y|D=0, Z=z] = \mu_0 + \delta_0 \mathbb{E}(V|D=0, Z=z)$$
$$\mathbb{E}(V|D=0, Z=z) = \frac{\varphi(\gamma_0 + \gamma_1 z)}{1 - \Phi(\gamma_0 + \gamma_1 z)}$$

Heckman Two-step Estimator

Define the following shorthand:

$$\lambda(z) \equiv \mathbb{E}(V|D=0, Z=z) = rac{arphi(\gamma_0+\gamma_1 z)}{1-\Phi(\gamma_0+\gamma_1 z)} \ \kappa(z) \equiv \mathbb{E}(V|D=1, Z=z) = rac{-arphi(\gamma_0+\gamma_1 z)}{\Phi(\gamma_0+\gamma_1 z)}.$$

Then we have

$$\mathbb{E}[Y|D=0, Z] = \mu_0 + \delta_0 \lambda(Z)$$
$$\mathbb{E}[Y|D=1, Z] = \mu_1 + \delta_1 \kappa(Z)$$

• Use *D* and *Z* to estimate γ_0 and γ_1

- To estimate μ_0 and δ_0 regress Y on $\lambda(Z)$ and a constant for obs with D = 0
- ▶ To estimate μ_1 and δ_1 regress Y on $\kappa(Z)$ and a constant for obs with D = 1

Step 1: $(U_0, U_1) \perp Z | V$

Axioms of Conditional Independence

See https://expl.ai/LXPVDDN or chapter 2 of the lecture notes

$$(Assumption) \quad Z \bot\!\!\!\bot (U_0, U_1, V) \implies Z \bot\!\!\!\bot (U_0, U_1, V) | V \qquad (Weak Union)$$

$$\implies Z \perp (U_0, U_1) | V$$
 (Decomposition)

$$\implies (U_0, U_1) \perp Z | V \qquad (Symmetry)$$

Step 2: $\mathbb{E}(U_0|V)$ and $\mathbb{E}(U_1|V)$. General Result: $(X, Y) \sim$ Bivariate Normal

$$\mathbb{E}(Y|X=x) = \mathbb{E}(Y) + rac{\mathsf{Cov}(Y,X)}{\mathsf{Var}(X)} [x - \mathbb{E}(X)]$$

Our Setting: $V \sim N(0, 1)$

$$\mathbb{E}(Y_1 - Y_0|V) = (\mu_1 - \mu_0) + \mathbb{E}(U_1 - U_0)$$

$$\mathbb{E}(U_1|V) = \sigma_1 \rho_1 V \equiv \delta_0 V$$
$$\mathbb{E}(U_0|V) = \sigma_0 \rho_0 V \equiv \delta_1 V$$

$$\mathbb{E}(U_1 - U_0 | V) = (\sigma_1 \rho_1 - \sigma_0 \rho_0) V \equiv (\delta_1 - \delta_0) V$$

Step 3: $\mathbb{E}(Y|D, Z, V)$

$$\mathbb{E}(Y|D = 0, Z, V) = \mathbb{E}(Y_0|D = 0, Z, V) = \mu_0 + \mathbb{E}(U_0|D = 0, Z, V) \quad (Defn. of Y_0) = \mu_0 + \mathbb{E}(U_0|Z, V) \quad (D = f(Z, V)) = \mu_0 + \mathbb{E}(U_0|V) \quad (Step 1) = \mu_0 + \delta_0 V \quad (Step 2)$$

 $\mathbb{E}(Y|D=1,Z,V) = \mu_1 + \delta_1 V \qquad (\text{Same Steps})$

Step 4: $\mathbb{E}(Y, D, Z)$

$$\begin{split} \mathbb{E}(Y|D=0,Z) &= \mathbb{E}_{V|(D=0,Z)} \left[\mathbb{E}(Y|D=0,Z,V) \right] & (\text{Iterated } \mathbb{E}) \\ &= \mathbb{E}(\mu_0 + \delta_0 V|D=0,Z) & (\text{Step 3}) \\ &= \mu_0 + \delta_0 \mathbb{E}(V|D=0,Z) & (\text{Linearity of } \mathbb{E}) \end{split}$$

$$\mathbb{E}(Y|D=1,Z) = \mu_1 + \delta_1 \mathbb{E}(V|D=1,Z)$$
 (Same Steps)

The Mean of a Truncated Normal Distribution

We will need these results on the next slide!

Derivation of the first result: https://expl.ai/VFARCYE.

Suppose that $Z \sim N(0, 1)$. Then for any constants a, b, c

$${\it E}(Z|Z>c)=rac{arphi(c)}{1-\Phi(c)}$$

$$E(Z|Z < c) = rac{-arphi(c)}{\Phi(c)}$$

$$E(Z|a < Z < b) = rac{-[arphi(b) - arphi(a)]}{\Phi(b) - \Phi(a)}$$

Step 5: $\mathbb{E}(V|D, Z)$

$$\mathbb{E}(V|D = 1, Z = 1) = \mathbb{E}(V|\gamma_0 + \gamma_1 > V, Z = 1) \quad (D = f(Z, V))$$
$$= \mathbb{E}(V|\gamma_0 + \gamma_1 > V) \quad (V \perp Z)$$
$$= \frac{-\varphi(\gamma_0 + \gamma_1)}{\Phi(\gamma_0 + \gamma_1)} \quad (\text{Trunc. Normal})$$

$$\mathbb{E}(V|D=1, Z=0) = \frac{-\varphi(\gamma_0 + \gamma_1)}{\Phi(\gamma_0 + \gamma_1)}$$
 (Similar Steps)

$$\mathbb{E}(V|D=0, Z=1) = \frac{\varphi(\gamma_0 + \gamma_1)}{1 - \Phi(\gamma_0 + \gamma_1)}$$
(Similar Steps)

$$\mathbb{E}(V|D=0, Z=0) = \frac{\varphi(\gamma_0)}{1-\Phi(\gamma_0)}$$
(Similar Steps)