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Treatment Effects: The Big Picture
The Best We Can Do?
▶ Ideally, want to learn individual treatment effects but we can’t: fundamental

problem of causal inference!
▶ Barring that, want to learn distribution of treatment effects, but we can’t:

fundamental problem of causal inference! (Can bound them: Notes Chapter 3)
▶ ATE (or conditional ATE) usually considered best we can do. Identified by “gold

standard” placebo controlled, randomized trial with perfect compliance.

We can’t force people!
▶ Even when treatment is randomly assigned, can’t force people to take it:

randomized encouragement design
▶ Intent-to-treat (ITT) effect: causal effect of offering treatment. “Diluted” by

people offered who don’t take (typically assume exclusion restriction).
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https://www.treatment-effects.com/treatment-effects.pdf


Better LATE than Nothing?

▶ IV allows us to go beyond ITT effects, but if treatment effects are heterogenous, we
recover the LATE: average effect for compliers

▶ Is the LATE an interesting quantity? Maybe, maybe not.
▶ Recently: lots of interest in extrapoLATE-ing “beyond LATE” to more interesting

causal parameters. That is the topic of this lecture and the next one
▶ Many issues here, but most important: what causal parameters should we be

interested in and why?

Two Key Questions
1. What is it possible to learn form data? (Identification)

2. What do we plan to do with our causal effect? (Less commonly asked)
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Causal Effects are for Decisionmaking

Example Causal Question
▶ What is the causal effect of cognitive behavioral therapy (CBT) on anxiety?

Individual’s Decision Problem
▶ You have anxiety, and need to decide whether to get CBT (D = 1) or not (D = 0).

Weigh the costs against benefits. Chamberlain (2011)
▶ You are probably interested in the ATE or conditional ATE: on average, what is the

treatment effect for a person like me?
▶ Side point: experiment only tells you useful information under a consistency

condition, i.e. choosing treatment has the same effect as being allocated treatment.
▶ Crucial, if obvious, feature: you can force yourself to take treatment

4 / 35

https://www.treatment-effects.com/chamberlain-2011.pdf


Causal Effects are for Decisionmaking

Example Causal Question
▶ What is the causal effect of cognitive behavioral therapy (CBT) on anxiety?

Policymaker’s Decision Problem
▶ Should we expand access to CBT on the UK National Health Service (NHS)?

Weigh the costs against the benefits.
▶ We can’t force people with anxiety to get CBT by making it more widely available

so the ATE isn’t the relevant quantity.
▶ If we expand access, some more people will be treated. Policy question is: what is

the average benefit, per additional person enrolled, of expanding access?
▶ When treatment is voluntary, it becomes crucial for policy analysis to understand

how treatment effects may correlate with willingness to take up treatment.
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Causal Effects for Policymaking? TOT and TUT Effects
Treatment on the Treated (TOT aka ATT)
▶ Existing program; only some of those eligible choose to enroll. If we eliminated the

program, how much worse off would current participants be?
▶ Average effect of a program or policy for those who currently choose to enroll.
▶ Equals LATE under one-sided non-compliance: no always-takers

Treatment on the Untreated (TUT aka ATU)
▶ Existing program; only some of those eligible choose to enroll. If we forced all

non-participants to enroll, how much better off would they be?
▶ Average effect of a program of policy for those who currently choose not to enroll.
▶ Equals LATE under one-sided non-compliance: no never-takers
▶ E.g. increase in UK minimum school-leaving age from 15 to 16 (September 1972).
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Beyond LATE in a “Textbook” Model

Y0 = µ0 + U0

Y1 = µ1 + U1

D = 1{γ0 + γ1Z > V }
Y = (1 − D)Y0 + DY1

Z ∼ Bernoulli(q) |= (V , U0, U1) V
U0
U1

 ∼ Normal


0

0
0

 ,

1 σ0ρ0 σ1ρ1
σ2

0 σ01
σ2

1




▶ Heckman, Tobias & Vytlacil (2001), Angrist (2004)
▶ Treatment effects (Y1 − Y0) are heterogeneous, ATE = µ1 − µ0.
▶ Selection into treatment up D depends on:

1. Binary instrument / encouragement Z
2. Heterogeneous cost / resistance to treatment V (free normalization)

▶ Closed-form expressions: compare ATE, LATE, TOT and TUT.
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https://www.treatment-effects.com/Heckman-Tobias-Vytlacil-2001.pdf
https://www.treatment-effects.com/Angrist-2004.pdf


Simulation: µ1 = µ0 = 0, σ0 = σ1 = 1, σ01 = 1/2
library(mvtnorm)
library(tidyverse)
rho0 <- 0.5
rho1 <- 0.2

S <- matrix(c(1, rho0, rho1,
rho0, 1, 0.5,
rho1, 0.5, 1), 3, 3, byrow = TRUE)

set.seed(1983)
sims <- rmvnorm(5e3, sigma = S)
colnames(sims) <- c('V', 'Y0', 'Y1')
sims <- as_tibble(sims)
sims <- sims |>

mutate(Delta = Y1 - Y0)
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sims

## # A tibble: 5,000 x 4
## V Y0 Y1 Delta
## <dbl> <dbl> <dbl> <dbl>
## 1 -0.122 -0.399 1.08 1.48
## 2 -0.506 -1.10 1.49 2.59
## 3 0.00457 -0.121 -0.456 -0.335
## 4 -0.549 -0.248 -0.899 -0.651
## 5 1.95 -0.0948 -0.675 -0.580
## 6 0.561 0.112 -0.615 -0.726
## 7 -0.238 -0.439 -1.53 -1.10
## 8 -1.46 -1.23 -0.0548 1.17
## 9 -0.336 -0.891 1.53 2.42
## 10 -0.845 -0.274 0.637 0.911
## # i 4,990 more rows
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DV_scatter <- sims |>
ggplot(aes(x = V, y = Delta)) +
geom_point() +
geom_smooth()

Dhist <- sims |>
ggplot(aes(x = Delta)) +
geom_histogram()
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library(gridExtra)
grid.arrange(DV_scatter, Dhist, ncol = 2)
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▶ ∆ is normally distributed; ∆ and V are linearly dependent (jointly normal).

These Parameter Values
▶ ATE is zero; higher cost/resistance V =⇒ lower treatment effect ∆
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Properties of the Textbook Model

Y0 = µ0 + U0

Y1 = µ1 + U1

D = 1{γ0 + γ1Z > V }
Y = (1 − D)Y0 + DY1

Z ∼ Bernoulli(q) |= (V , U0, U1) V
U0
U1

 ∼ Normal
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0
0

 ,

1 σ0ρ0 σ1ρ1
σ2
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1




Implications
▶ ∆ ≡ Y1 − Y0 ∼ Normal(µ1 − µ0, σ2

0 + σ2
1 − 2σ01)

▶ Cov(∆i , Vi) = Cov(Y1i , Vi) − Cov(Y0i , Vi) = σ1ρ1 − σ0ρ0
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LATE for the Textbook Model

▶ LATE = average effect for compliers: people induced to take treatment by Z .
▶ Since D = 1(γ0 + γ1Z > V ), compliers are defined by γ0 ≤ V < γ0 + γ1

▶ Depends on the particular instrument through γ0, γ1

gamma0 <- -1
gamma1 <- 1.5
sims <- sims |>

mutate(complier = (V >= gamma0) & (V < gamma0 + gamma1))
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Who’s a complier when γ0 = −1 and γ1 = 1.5?
sims

## # A tibble: 5,000 x 5
## V Y0 Y1 Delta complier
## <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 -0.122 -0.399 1.08 1.48 TRUE
## 2 -0.506 -1.10 1.49 2.59 TRUE
## 3 0.00457 -0.121 -0.456 -0.335 TRUE
## 4 -0.549 -0.248 -0.899 -0.651 TRUE
## 5 1.95 -0.0948 -0.675 -0.580 FALSE
## 6 0.561 0.112 -0.615 -0.726 FALSE
## 7 -0.238 -0.439 -1.53 -1.10 TRUE
## 8 -1.46 -1.23 -0.0548 1.17 FALSE
## 9 -0.336 -0.891 1.53 2.42 TRUE
## 10 -0.845 -0.274 0.637 0.911 TRUE
## # i 4,990 more rows
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Whos’s a complier when γ0 = −1, γ1 = 1.5?
ggplot(sims, aes(x = V, fill = complier)) +

geom_histogram()
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# Share of compliers
pnorm(gamma0 + gamma1) - pnorm(gamma0)

## [1] 0.5328072
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Who’s a complier when γ0 = −1 and γ1 = 1.5?
ggplot(sims, aes(x = V, y = Delta, col = complier)) +

geom_point(alpha = 0.4)
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Average Treatment Effects by Complier Status: γ0 = −1, γ1 = 1.5

sims |>
group_by(complier) |>
summarize(mean(Y1 - Y0)) |>
knitr::kable(digits = 3)

complier mean(Y1 - Y0)

FALSE -0.083
TRUE 0.068
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Different Instrument, Different LATE: γ0 = −1, Varying γ1
get_LATE <- function(gamma1) {

sims |>
mutate(complier = (V >= -1) & (V < -1 + gamma1)) |>
filter(complier) |>
summarize(LATE = mean(Y1 - Y0)) |>
pull()

}

gamma1_seq <- c(0.75, 1, 1.25, 1.5, 1.75, 2)
LATE <- map_dbl(c(0.75, 1, 1.25, 1.5, 1.75, 2), get_LATE)
rbind(gamma1_seq, LATE) |> knitr::kable(digits = 2)

gamma1_seq 0.75 1.00 1.25 1.50 1.75 2
LATE 0.21 0.15 0.11 0.07 0.03 0
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TOT and TUT in the Textbook Model

TOT ≡ E(∆|D = 1)
= E(∆|D = 1, Z = 0)P(Z = 0|D = 1) + E(∆|D = 1, Z = 1)P(Z = 1|D = 1)
= E(∆|V < γ0)︸ ︷︷ ︸

Always-takers

×(1 − q1) + E(∆|V < γ0 + γ1)︸ ︷︷ ︸
Always-takers & Compliers

×q1

TUT ≡ E(∆|D = 0)
= E(∆|D = 0, Z = 0)P(Z = 0|D = 0) + E(∆|D = 0, Z = 1)P(Z = 1|D = 0)
= E(∆|V > γ0)︸ ︷︷ ︸

Never-takers & Compliers

(1 − q0) + E(∆|V > γ0 + γ1)︸ ︷︷ ︸
Never-takers

q0
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TOT and TUT in the Textbook Model

▶ TOT is a weighted average of E(∆|V < γ0) and E(∆|V < γ0 + γ1).
▶ TUT is a weighted average of E(∆|V > γ0) and E(∆|V > γ0 + γ1).
▶ Need to be able to calculate E(∆|V > c) and E(∆|V < c).
▶ TOT and TUT depend on Z through γ0 and γ1: defines “the treated”
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# Need Z to define "the treated"
sims <- sims |>

select(-complier) |>
mutate(Z = rbinom(nrow(sims), 1, 0.5),

treated = gamma0 + gamma1 * Z > V)
sims

## # A tibble: 5,000 x 6
## V Y0 Y1 Delta Z treated
## <dbl> <dbl> <dbl> <dbl> <int> <lgl>
## 1 -0.122 -0.399 1.08 1.48 0 FALSE
## 2 -0.506 -1.10 1.49 2.59 0 FALSE
## 3 0.00457 -0.121 -0.456 -0.335 0 FALSE
## 4 -0.549 -0.248 -0.899 -0.651 0 FALSE
## 5 1.95 -0.0948 -0.675 -0.580 1 FALSE
## 6 0.561 0.112 -0.615 -0.726 0 FALSE
## 7 -0.238 -0.439 -1.53 -1.10 1 TRUE
## 8 -1.46 -1.23 -0.0548 1.17 1 TRUE
## 9 -0.336 -0.891 1.53 2.42 1 TRUE
## 10 -0.845 -0.274 0.637 0.911 0 FALSE
## # i 4,990 more rows
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Who’s treated if q = 0.5, γ0 = −1 and γ1 = 1.5?
ggplot(sims, aes(x = V, y = Delta, col = treated)) +

geom_point(alpha = 0.4)
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TOT and TUT Effects: q = 0.5, γ0 = −1 and γ1 = 1.5

sims |>
group_by(treated) |>
summarize(mean(Y1 - Y0)) |>
knitr::kable(digits = 3)

treated mean(Y1 - Y0)

FALSE -0.170
TRUE 0.223

▶ Different values of q, γ0, γ1, would give different TUT and TOT.
▶ In this example we have selection on gains: TUT < ATE < TOT

23 / 35



Analytical Results for the Textbook Model

ATE = µ1 − µ0

LATE = ATE − (σ1ρ1 − σ0ρ0)
[

φ(γ0 + γ1) − φ(γ0)
Φ(γ0 + γ1) − Φ(γ0)

]

TOT = ATE − (σ1ρ1 − σ0ρ0)
[ (1 − q)φ(γ0) + qφ(γ0 + γ1)

(1 − q)Φ(γ0) + qΦ(γ0 + γ1)

]

TUT = ATE + (σ1ρ1 − σ0ρ0)
[ (1 − q)φ(γ0) + qφ(γ0 + γ1)

(1 − q){1 − Φ(γ0)} + q{1 − Φ(γ0 + γ1)}

]

24 / 35



Example: σ0 = σ1 = 1 and q = 1/2

Formulas Simplify (δ ≡ ρ1 − ρ0)

LATE = −δ

[
φ(γ0 + γ1) − φ(γ0)
Φ(γ0 + γ1) − Φ(γ0)

]

TOT = −δ

[
φ(γ0) + φ(γ0 + γ1)
Φ(γ0) + Φ(γ0 + γ1)

]

TUT = δ

[
φ(γ0) + φ(γ0 + γ1)

{1 − Φ(γ0)} + {1 − Φ(γ0 + γ1)}

]
▶ In the practical session you will reproduce some plots from Angrist (2004).
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https://www.treatment-effects.com/Angrist-2004.pdf


First-stage effect 0.07, q = 1/2, δ = −0.1
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Why do we care about any of this?

▶ In the textbook model we can see how the ATE, LATE, TOT and TUT compare.
▶ The key parameters of the textbook model are point identified.
▶ This allows us to use data to go beyond LATE to other causal effects: ATE, TOT

and TUT, and more (next time).
▶ Next Time: Marginal Treatment Effects methods are a modern “update” of this

textbook model.
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Heckman Two-step Estimator

We will show that:

E[Y |D = 1, Z = z ] = µ1 + δ1E(V |D = 1, Z = z)

E(V |D = 1, Z = z) = −φ(γ0 + γ1z)
Φ(γ0 + γ1z)

E[Y |D = 0, Z = z ] = µ0 + δ0E(V |D = 0, Z = z)

E(V |D = 0, Z = z) = φ(γ0 + γ1z)
1 − Φ(γ0 + γ1z)
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Heckman Two-step Estimator
Define the following shorthand:

λ(z) ≡ E(V |D = 0, Z = z) = φ(γ0 + γ1z)
1 − Φ(γ0 + γ1z)

κ(z) ≡ E(V |D = 1, Z = z) = −φ(γ0 + γ1z)
Φ(γ0 + γ1z) .

Then we have
E[Y |D = 0, Z ] = µ0 + δ0λ(Z )
E[Y |D = 1, Z ] = µ1 + δ1κ(Z )

▶ Use D and Z to estimate γ0 and γ1

▶ To estimate µ0 and δ0 regress Y on λ(Z ) and a constant for obs with D = 0
▶ To estimate µ1 and δ1 regress Y on κ(Z ) and a constant for obs with D = 1
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Step 1: (U0, U1) |= Z |V

Axioms of Conditional Independence
▶ See https://expl.ai/LXPVDDN or chapter 2 of the lecture notes

(Assumption) Z |= (U0, U1, V ) =⇒ Z |= (U0, U1, V )|V (Weak Union)

=⇒ Z |= (U0, U1)|V (Decomposition)

=⇒ (U0, U1) |= Z |V (Symmetry)
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Step 2: E(U0|V ) and E(U1|V ).
General Result: (X , Y ) ∼ Bivariate Normal

E(Y |X = x) = E(Y ) + Cov(Y , X )
Var(X ) [x − E(X )]

Our Setting: V ∼ N(0, 1)

E(Y1 − Y0|V ) = (µ1 − µ0) + E(U1 − U0)

E(U1|V ) = σ1ρ1V ≡ δ0V
E(U0|V ) = σ0ρ0V ≡ δ1V

E(U1 − U0|V ) = (σ1ρ1 − σ0ρ0)V ≡ (δ1 − δ0)V

31 / 35



Step 3: E(Y |D, Z , V )

E(Y |D = 0, Z , V ) = E(Y0|D = 0, Z , V )
= µ0 + E(U0|D = 0, Z , V ) (Defn. of Y0)
= µ0 + E(U0|Z , V ) (D = f (Z , V ))
= µ0 + E(U0|V ) (Step 1)
= µ0 + δ0V (Step 2)

E(Y |D = 1, Z , V ) = µ1 + δ1V (Same Steps)
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Step 4: E(Y , D, Z )

E(Y |D = 0, Z ) = EV |(D=0,Z) [E(Y |D = 0, Z , V )] (Iterated E)
= E(µ0 + δ0V |D = 0, Z ) (Step 3)
= µ0 + δ0E(V |D = 0, Z ) (Linearity of E)

E(Y |D = 1, Z ) = µ1 + δ1E(V |D = 1, Z ) (Same Steps)
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The Mean of a Truncated Normal Distribution
▶ We will need these results on the next slide!
▶ Derivation of the first result: https://expl.ai/VFARCYE.

Suppose that Z ∼ N(0, 1). Then for any constants a, b, c

E (Z |Z > c) = φ(c)
1 − Φ(c)

E (Z |Z < c) = −φ(c)
Φ(c)

E (Z |a < Z < b) = −[φ(b) − φ(a)]
Φ(b) − Φ(a)
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Step 5: E(V |D, Z )

E(V |D = 1, Z = 1) = E(V |γ0 + γ1 > V , Z = 1) (D = f (Z , V ))
= E(V |γ0 + γ1 > V ) (V |= Z )

= −φ(γ0 + γ1)
Φ(γ0 + γ1) (Trunc. Normal)

E(V |D = 1, Z = 0) = −φ(γ0 + γ1)
Φ(γ0 + γ1) (Similar Steps)

E(V |D = 0, Z = 1) = φ(γ0 + γ1)
1 − Φ(γ0 + γ1) (Similar Steps)

E(V |D = 0, Z = 0) = φ(γ0)
1 − Φ(γ0) (Similar Steps)
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