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Abstract—In this paper, we propose an easy-to-implement procedure to test
the key conditions for the identification and estimation of the local aver-
age treatment effect (LATE; Imbens & Angrist, 1994). We reformulate the
testable implications of LATE assumptions as two conditional inequalities,
which can be tested in the intersection bounds framework of Chernozhukov,
Lee, and Rosen (2013) and easily implemented using the Stata package of
Chernozhukov et al. (2015). We apply the proposed tests to the draft eli-
gibility instrument in Angrist (1991), the college proximity instrument in
Card (1993), and the same-sex instrument in Angrist and Evans (1998).

I. Introduction

THE instrumental variable (IV) method is one of the
most commonly used techniques in applied economics

to identify the causal effect of an endogenous treatment on a
particular outcome. In the framework of potential outcome
models, a valid instrument is often assumed to be indepen-
dent of all potential outcomes and potential treatments; in
the meantime, it must have no effect on the observed out-
come beyond its effect on the observed treatment. Imbens
and Angrist (1994, IA hereafter) showed that a valid instru-
ment itself does not ensure that the IV estimand identifies the
average treatment effect (ATE) when the treatment effect is
heterogeneous. To deal with this issue, IA (1994) introduced
LM (LATE monotonicity also known as the “no defiers”
assumption), which assumes the instrument affects the treat-
ment decision in the same direction for every individual.
When both LI (LATE independence) and LM hold, IA (1994)
showed that the IV estimand identifies the ATE for the
subpopulation of compliers, namely, the LATE.

Although the results of IA (1994) have been widely influ-
ential in the applied economics literature, there are still
concerns about the validity of the key assumptions. For
instance, Dawid (2000) discussed applications where LM
is likely to be violated. Such concerns, however, cannot be
directly verified since LM itself is not testable, as discussed
in IA (1994). Balke and Pearl (1997) and Heckman and
Vytlacil (2005) first discussed testable implications of the
joint assumptions of LI and LM. Based on these insights,
Kitagawa (2008, 2015) showed that this set of testable impli-
cations is a sharp characterization of LM and LI, in the sense
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that it is the most informative set of testable implications
for detecting observable violations of the joint LI and LM
assumptions and first proposed a test for these implications.

In this paper, we revisit the existing discussions on test-
ing the joint validity of LM and LI and show that this set of
testable implications can be tested in an easy-to-implement
way. In particular, we reveal that the sharp characterization
of LI and LM can be represented by a set of conditional
moment inequalities. The novelty, and a nice feature, of
this conditional moment inequality representation, is that the
outcome variable enters the inequalities as a conditioning
variable, and one can easily incorporate additional covari-
ates into the moment inequalities as additional conditioning
variables. Interestingly, with this representation, the sharp
testable implications of both LI and LM assumptions can
be tested using the intersection bounds framework of Cher-
nozhukov, Lee, and Rosen (2013, CLR hereafter). The test
can be implemented with the Stata package provided by
Chernozhukov et al. (2015), which is readily available for
empirical researchers to use.

This testing procedure is different from but complements
the (variance-weighed) Kolmogorov-Smirnov test proposed
by Kitagawa (2015). First, the two tests have different power
properties. Kitagawa’s (2015) test has nontrivial power
against root-n local alternatives provided that the limit of
the alternatives admits a contact set of outcome variable
with strictly positive probability mass. We consider a con-
ditional moment inequality reformulation and apply CLR’s
test, which has nontrivial power against local alternatives
subject to a nonparametric rate but does not require such
a contact set restriction. As discussed in CLR, both cases
are important in applications. Second, the proposed test-
ing procedure requires local linear regression and therefore
the choice of a smoothing constant. We follow CLR and
use the rule-of-thumb choice given by Fan and Gijbels
(1996) in our empirical applications. Kitagawa’s (2015) test
is based on empirical distribution functions, whose variance-
weighted version requires a choice of a trimming constant to
ensure the inverse weighting terms to be bounded away from
0. Third, the test can accommodate continuous covariates
within the same framework. Indeed, as we further elaborate
in section VI, it requires no more than adding covariates
as new conditioning variables in the moment inequalities
and estimating the conditional expectation of the instrument
given covariates. Kitagawa (2015) follows Andrews and
Shi’s (2013) approach to transform the testable implication
to unconditional moment restrictions. Finally, our testing
procedure can be easily implemented using the Stata pack-
age provided by Chernozhukov et al. (2015). Other papers
discuss testing issues under a different setup. Machado,
Shaikh, and Vytlacil (2013) proposed tests for LM or out-
come monotonicity (in treatment) in a binary treatment,
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306 THE REVIEW OF ECONOMICS AND STATISTICS

binary instrument, and binary outcome setup while maintain-
ing the LI assumption. Huber and Mellace (2013) considered
a model in which the instrument respects mean independence
rather than full independence and proposed a specification
test based on a different set of testable implications.

Our paper also contributes to the empirical literature. We
apply the proposed test to three well-known instruments
used in the literature: the draft eligibility instrument, the
college proximity instrument, and the same-sex instrument.
Angrist (1991) analyzed the effect of veteran status on civil-
ian earnings using the binary indicator of the draft eligibility
as instrument. Card (1993) analyzed the effect of schooling
on earning using a binary indicator of whether an individ-
ual was born close to a four-year college. Angrist and Evans
(1998) studied the causal relationship between fertility and
women’s labor income using the variable that the first two
children are of the same sex as the instrument. Our test does
not reject the testable implication of LI + LM for draft eligi-
bility and same-sex instrument. We do, however, find that the
implication is rejected for the college proximity instrument
on the subgroup of nonblack men who lived in the metro-
politan area of southern states. The rejection mainly takes
place among individuals with higher labor income.

The rest of the paper is organized as follows. Section II
presents the analytical framework. In section III, we revisit
the testable implications of the LATE assumptions, followed
by section IV, which presents our testing procedure. We dis-
cuss empirical applications in section V. The last section
extends our analysis to the case with additional covariates.

II. Analytical Framework

We adopt Rubin’s (1974) potential outcome model. Let
Y = Y1D + Y0(1 − D), where Y is the observed out-
come taking values from the support Y , D ∈ {0, 1} is the
observed treatment indicator, and (Y1, Y0) are potential out-
comes. Let Z be the instrumental variable. For simplicity, we
assume Z ∈ Z = {0, 1}, but our analysis can be extended
to allow for multivalued Z . For each z ∈ Z , let Dz be
the potential treatment if Z had been exogenously set to z.
With this notation, we can also write the observed treatment
D = D1Z + D0(1 − Z).

The two well-known identification assumptions for LATE
as introduced by IA (1994) are restated as the following:

Assumption 1 (LATE Independence -LI). Z ⊥ (Y1, Y0, D0,
D1) and P(D = 1|Z = 0) �= P(D = 1|Z = 1).

Assumption 2 (LATE Monotonicity -LM). Either D0 ≤
D1 almost surely or D0 ≥ D1 almost surely.

For each d and z, let D−1
z (d) denote the subset of

the individuals in the population who would select treat-
ment d had the instrument been exogenously set to z. LM
then implies that we have either D−1

0 (1) ⊆ D−1
1 (1) or

D−1
1 (1) ⊆ D−1

0 (1). In general, the economic context suggests

Table 1.—Subpopulations

D0 D1 Proportion

a: Always takers 1 1 π11
def: Defiers 1 0 π10
c: Compliers 0 1 π01
n: Never takers 0 0 π00

Table 2.—Observed Subgroups and Unobserved Subpopulations

Z = 0 Z = 1

D = 0 π00 + π01 π00 + π10
D = 1 π10 + π11 π01 + π11

to empirical researchers the direction of the monotonicity.
In this paper, we assume that the hypothetical direction is
known to researchers. Without loss of generality (w.l.o.g.),
we focus on the direction of D0 ≤ D1 in the rest of the paper.

III. Testable Implications of the LATE Assumptions

In this section, we revisit a set of sharp testable implica-
tions of the LATE assumptions (LI and LM). For ease of
exposition, we first list in table 1 the standard notion of four
subpopulations defined by the potential treatments—always
takers, defiers, compliers, and never takers—and we use πij,
i, j ∈ {0, 1} to denote the corresponding probability mass.

Every observed subgroup {D = d, Z = z} for d, z ∈ {0, 1}
is composed of a mixture of unobserved subpopulations.
Indeed,

P(D = 0|Z = 0) = P(D1Z + D0(1 − Z) = 0|Z = 0)

= P(D0 = 0|Z = 0) = P(D0 = 0, D1 = 0)

+ P(D0 = 0, D1 = 1) = π00 + π01,

where the third equality holds under assumption 1. By a
similar derivation, we can obtain the other three conditional
probabilities, as summarized in table 2.

Notice that by definition, we can easily see that LM is
equivalent to the nonexistence of defiers (i.e., π10 = 0). Let
BY be a collection of Borel sets generated from Y ; then LM
and LI necessarily imply that for an arbitrary A ∈ BY ,

P(Y ∈ A, D = 1|Z = 0) = P(Y1 ∈ A, D = 1|Z = 0)

= P(Y1 ∈ A, D0 = 1|Z = 0) = P(Y1 ∈ A, D0 = 1)

≤ P(Y1 ∈ A, D1 = 1) = P(Y ∈ A, D = 1|Z = 1), (1)

where the third and fourth equalities hold by LI and the first
inequality holds by LM. Similarly, we have

P(Y ∈ A, D = 0|Z = 1) ≤ P(Y ∈ A, D = 0|Z = 0). (2)

Therefore, as long as there exists A ∈ BY such that either
inequality (1) or (2) is violated, we must reject the joint
assumptions of LM + LI assumptions. Note that inequalities
(1) and (2) are not sufficient for the joint assumptions to hold
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in the sense that there could exist a potential outcome model
in which both (1) and (2) hold but LM + LI is violated.1

Inequalities (1) and (2) need not be the only set of testable
implications of LM and LI. Theorem 1 shows, however, that
they are the sharp characterization of LI and LM in the sense
that whenever inequalities (1) and (2) hold, there always
exists another potential outcome model compatible with the
data in which LI and LM hold.

Theorem 1 (Sharp characterization of the LATE assump-
tions). Let Y , D1, D0, Y1, Y0, Z define a potential outcome
model Y = Y1D + Y0(1 − D). (i) If LM and LI hold, then
equations (1) and (2) hold. (ii) If equations (1) and (2) hold,
there exists a joint distribution of (D̃1, D̃0, Ỹ1, Ỹ0, Z) such that
LM and LI hold and (Ỹ , D̃, Z) has the same distribution as
(Y , D, Z).

Theorem 1 is essentially equivalent to but presented in a
different way from Kitagawa (2015, proposition 1.1) and the
proof is therefore omitted. The sharpness result shows that
inequalities (1) and (2) are the most informative observable
restrictions for assessing the validity of the joint LI and LM
assumptions. However, whenever the cardinality of the out-
come space is large, the number of inequalities to visit is
very high because the number of inequalities to be checked
is equal to the number of subsets of the set of observable
outcomes. When Y is continuous, there are infinitely many
elements in BY . In practice, the performance of a test also
depends on the subsets we search through, especially when
many of the inequalities are redundant. One solution is to fol-
low the idea discussed in Galichon and Henry (2006, 2011)
and Chesher, Rosen, and Smolinski (2013) to find a low (or
the lowest) cardinality collection of sets that are sufficient
to characterize all the restrictions imposed by inequalities
(1) and (2). To the best of our knowledge, the issue of find-
ing the smallest collection of sets in a generic setup remains
open. To deal with this important issue, we propose to use
an alternative representation. Note that for every A ∈ BY ,
there is P(Y ∈ A, D = 1|Z = 1)P(Z = 1) = P(D = 1, Z =
1, Y ∈ A). Let 1Y∈· be the indictor function. Inequalities (1)
and (2) can be written as

E[1Y∈AD(1 − Z)]P(Z = 1) ≤ E[1Y∈ADZ]P(Z = 0) (3)

and

E[1Y∈A(1 − D)Z]P(Z = 0)

≤ E[1Y∈A(1 − D)(1 − Z)]P(Z = 1). (4)

Since A ∈ BY , the above inequalities hold with a class of
cubes too. We can apply Andrews and Shi (2013, lemma 3)
and further write them as ∀y ∈ Y ,

1 Chaisemartin (2013) refers to this as “weak more compliers than defiers.”

⎧⎪⎨
⎪⎩

θ( y, 1) ≡ E[c1D(1 − Z) − c0DZ|Y = y] ≤ 0

θ( y, 0) ≡ E[c0(1 − D)Z − c1(1 − D)(1 − Z)|Y = y]
≤ 0,

(5)

where ck = P(Z = k) for k = 0, 1. Let V = Y × {0, 1}, and
then the null hypothesis can be formulated as

H0 : θ0 ≡ sup
v∈V

θ(v) ≤ 0, H1 : θ0 > 0. (6)

The advantage of considering the hypothesis stated in
equation (6) is to facilitate implementation.

With our formulation, researchers do not have to find the
lowest cardinality collection of sets and can simply apply
the existing inference methods in CLR, as explained in the
following section.

IV. Testing Procedures

In this section, we formalize a testing procedure for the
hypotheses specified in equation (6), that is,

H0 : θ0 ≡ sup
v∈V

θ(v) ≤ 0, H1 : θ0 > 0,

where v ∈ Y × {0, 1}. We propose to use the intersection
bounds framework of CLR, which provides an inference pro-
cedure for bounds defined by supremum (or infimum) of a
nonparametric function. To be more specific, let 0 < α < 1

2
be the prespecified significance level, and we reject the H0

if θ̂α > 0, where

θ̂α ≡ sup
v∈V

{θ̂(v) − s(v)kα},

and θ̂(·) is the local linear estimator for θ(·). s(·) and kα

are estimates for point-wise standard errors and critical
value, respectively. For implementation, one does not have
to calculate θ̂, s, and kα explicitly; therefore, we leave their
expressions in appendix A.1 for the sake of exposition. The
testing procedure can be easily implemented in Stata as
follows:

Implementation

1. Estimate c1 and c0 by ĉ1 = 1
n

∑n
i=1 Zi and ĉ0 = 1− ĉ1,

respectively.
2. Let L̂1

i = ĉ1Di(1 − Zi) − ĉ0DiZi and L̂0
i = ĉ0(1 −

Di)Zi − ĉ1(1 − Di)(1 − Zi).
3. Implement the CLRtest command with two condi-

tional moment inequalities. Specify L̂1
i and L̂0

i as the
dependent variables for each conditional inequality,
respectively. Specify Yi as the conditioning variable
for both inequalities. See Chernozhukov et al. (2015)
for the full set of options.
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308 THE REVIEW OF ECONOMICS AND STATISTICS

We make the following assumptions:

Assumption 3. {(Di, Yi, Zi)}n
i=1 are i.i.d observations.

Assumption 4. Y is convex and compact. For each (d, z),
the conditional density of Y given (D, Z) = (d, z) is bounded
away from 0 and twice continuously differentiable.

We assume the continuity of Y in assumption 4 only for
the purpose of exposition. If Y has finite discrete support, the
conditional inequalities in equation (10) can be represented
by a finite number of unconditional expectations. In this sce-
nario, the test is “parametric” and can still be implemented
within the framework.2 Assumptions 5 and 6 are conditions
on the choice of kernel and bandwidth, respectively.

Assumption 5. K(·) has support on [−1, 1], is symmetric
and twice differentiable, and satisfies

∫
K(u)du = 1.

Assumption 6. nh4 → ∞, and nh5 → 0 at polynomial
rates in n.

Proposition 1 is an application of CLR (theorem 6) that
verifies the consistency and validity of the proposed testing
procedure.

Proposition 1. Suppose that assumptions 3 to 6 are satis-
fied; then equation (1) under H0, P(θ̂α > 0) ≤ α + o(1);
equation (2) if θ( y, k) = 0 for all y ∈ Y and k ∈ {0, 1} , then
P(θ̂α > 0) → α; and equation (3) if supy∈Ya,k∈{0,1} θ( y, k) >

μn

√
log n/nh for any μn → ∞, then P(θ̂α > 0) → 1.

Proof. See section A.1 in the appendix.

Several observations were formed. First, our test is a type
of sup-tests based on conditional moment inequalities speci-
fied in expression (10) and hence does not require researchers
to find the lowest collection of sets. Our test is consistent
against any fixed alternatives and local alternatives subject to
the nonparametric estimation rate of θ(·, ·). Second, regard-
ing our test, continuous covariates can be easily incorporated
as additional conditioning variables. Finally, because of the
availability of the STATA package, our test can be easily

2 In the discrete outcome case, we can show that {{y1}, {y2}, · · · , {yJ}} is
the lowest cardinality collection of sets that are sufficient to characterize all
the restrictions imposed on the model. Therefore, without loss of generality,
restriction (1) can be written as

θ( y, 1) ≡
J∑

j=1

1[y = yj]β1j ≤ 0,

where β1j = P(Z = 1)E[D(1 − Z)|Y = yj] − P(Z = 0)E[DZ|Y = yj].
θ( y, 0) and β0j can be similarly defined for restriction (2). Both β1j and
β0j can be consistently estimated by estimators that converge at root-n rate
and have limiting normal distribution with estimable covariance matrix. To
implement, one can then follow the discussions in CLR (p. 709).

Table 3.—Summary Statistics of a PUMS Sample

Total D = 1 Z = 1
Observations 403,011 119,221 202,232

Age 33.805 (5.420) 34.026 (4.968) 33.820 (5.423)
Years of schooling 11.119 (2.339) 10.760 (2.493) 11.119 (2.332)
Race (nonwhite) 0.177 (0.381) 0.220 (0.415) 0.179 (0.382)
Having the third 0.296 (0.456) 1.000 (0.000) 0.325 (0.468)

child (D = 1)
First two same 0.502 (0.499) 0.553 (0.497) 1.000 (0.000)

sex (Z = 1)
Log wage 9.014 (1.227) 8.803 (1.278) 9.010 (1.229)

Average (standard deviation).

applied by empirical researchers to assess the validity of the
LATE assumptions.

V. Applications

In this section we apply our test to three well-known
instruments used in the literature: the same-sex instrument
in Angrist and Evans (1998), the draft eligibility instrument
in Angrist (1991), and the college proximity instrument in
Card (1993).

A. The Same-Sex Instrument

Our first application is about the same-sex instrument
used by Angrist and Evans (1998), who studied the rela-
tionship between fertility and labor income. This study was
complicated by the endogeneity of fertility. Angrist and
Evans (1998), proposed using the sibling-sex composition
to construct the IV estimator of the effect of childbearing
on the labor supply. In this application, D = 1 denotes that
the household had a third child, and Z = 1 denotes that
the first two children are of the same sex. The direction of
monotonicity under testing is D1 ≥ D0.

We consider a sample from the 1990 Census Public Micro
Samples (PUMS). The data contain information on age, gen-
der, race, education, labor income, and number of children.
We consider women with at least two children, between 21
and 50 years old, and with positive wage. This gives us a
sample of of 403, 011 individuals. The outcome variable of
interest is log wage. Summary statistics for the sample to
which we apply the test are given in table 3.

We divided 403, 011 observations into 24 subgroups
according to race (white or nonwhite), education (lower than
high school, high school, or higher than high school), and age
(21–28, 29–35, 36–42, 43–50) and conducted tests on each
of these groups. The subgroups’ sizes are reported in table 4.
Due to the memory constraint of our computer, we imple-
mented our test on randomly drawn subsamples of 25,000
for subgroups whose sizes are larger than this number.3

Throughout this section, we use the default choices
of bandwidth and kernel functions recommended in

3 As a robustness check, we repeated the test over different subsamples of
25, 000 for each of these large subgroups and obtained the same conclusion.
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Table 4.—Subgroup Sizes of the PUMS Sample

21–28 29–35 36–42 43–50

White, <high school 9,871 13,986 4,788 751
White, high school 36,386 89,449 55,279 6,749
White, >high school 7,234 43,376 52,793 10,906
Nonwhite, <high school 4,718 7,283 3,195 597
Nonwhite, high school 10,137 18,468 8,771 1,135
Nonwhite, >high school 1,395 6,724 7,223 1,797

Table 5.—Testing Results for All Three Instruments:

Linear Specification

AE1998 Same Sex Angrist 1991 Lottery Card 1993 Proximity

10% 5% 1% 10% 5% 1% 10% 5% 1%

NR NR NR R R R R R R

R: rejection; NR: no rejection. For linear specification, see the parametric option of the CKLR package.

CLR and Chernozhukov et al. (2015), that is, K(u) =
15
16 (1 − u2)21{|u| ≤ 1} and hROT × ŝ × n

1
5 × n− 2

7 , where
hROT is the rule-of-thumb choice given by Fan and Gijbels
(1996). To avoid the boundary issue, for each subgroup, we
compute the maximum in the test statistics over the interval
[Q2.5%, Q97.5%], where Qα is the α-quantile of the subgroup
under testing.

Since we conducted tests on 24 subpopulations s ∈
{1, 2, 3, · · · , 24}, we can view H0 = H(1)

0 ∩H(2)

0 ∩· · ·∩H(24)

0 ,
where H0 is defined as “inequality (10) holds for every sub-
population” and H(s)

0 is defined as “inequality (10) holds
for the subpopulation s.” Rejection of any of H(s)

0 implies
rejection of H0. Since we are checking a large number of
subpopulations, it is desirable to ensure that the family-
wise error rate (FWER) is controlled at targeted levels. We
consequently adapt the multiple testing procedure of Holm
(1979), a suitable framework to consider (see also an empir-
ical implementation in Bhattacharya, Shaikh, & Vytlacil,
2012). The testing results show that the smallest p-values
among all 24 groups are greater than 10%.4 Hence we are
able to conclude that the multiple testing procedures reject
no null hypothesis at the 10% level.5 Because sex mix is
virtually randomly assigned, this result can be interpreted as
evidence of the relative preference for the mix-sibling sex
over the same sex within our population of interest.

We also conducted the test with the parametric regres-
sion method,6 using the three demographic variables as
regressors. The null hypothesis is not rejected at all three
significance levels (see table 5), which is consistent with the
results obtained from the local linear methods.

4 The Stata command does not report the p-value for the “clrtest,” but one
can always set difference significance levels and find the marginal one that
gives rejection.

5 In the sample, there are 35.06% of observations with missing wage. We
excluded those observations. We also conducted a pointwise test conditional
on the missing wage subsample. The null hypothesis is not rejected either.

6 In CLR, “parametric regression” means that θ( y, k) is a known function
(up to finite dimensional parameters) of y for each k. In the Stata package,
“parametric regression” specifically means θ( y, k) is linear in y for each
k. It is worth noting that the Stata parametric regression option has the
advantage of allowing for multiple conditioning variables.

Table 6.—Summary Statistics of SIPP Data from Angrist (1991)

Draft Eligible Veteran
Total (Z = 1) (D = 1)

Observations 3,027 1,379 994

Age 34.063 (2.804) 34.685 (2.607) 35.064 (2.494)
Veteran (D = 1) 0.328 (0.470) 0.403 (0.491) 1.000 (0.000)
Draft eligible (Z = 1) 0.456 (0.498) 1.000 (0.000) 0.560 (0.497)
Years of schooling 13.522 (2.864) 13.578 (2.834) 13.443 (2.260)
Race (nonwhite) 0.118 (0.322) 0.116 (0.320) 0.080 (0.272)
log (weekly wage) 2.217 (0.532) 2.247 (0.534) 2.248 (0.498)

Average (standard deviation).

Table 7.—Testing Results for the Lottery Instrument

W,<HS W,=HS W,>HS NW,<HS NW,=HS NW,>HS
Subgroup ID 1 2 3 4 5 6
Observations 317 865 1,478 56 129 171

10% NR NR NR NR R NR
5% NR NR NR NR R NR
1% NR NR NR NR R NR

W: white; NW: nonwhite; HS: high school; R: rejection; NR: no rejection.

B. The Draft Eligibility Instrument

Our second empirical application is about the draft eligi-
bility instrument in Angrist (1991), who studied the effect of
veteran status on civilian earnings. Endogeneity arises since
enlisting for military service possibly involves self-selection.
To deal with the issue, Angrist (1991) constructed the binary
indicator of draft eligibility, which is theoretically randomly
assigned based on one’s birth date through the draft lotter-
ies. In this application, D = 1 denotes the veteran status and
Z = 1 denotes the individual was drafted. The direction of
monotonicity under testing is D1 ≥ D0.

We used a sample of 3,071 individuals from the 1984
Survey of Income and Program Participation (SIPP).7 (See
the summary statistics in table 6.) The sample was divided
into six groups according to race (white or nonwhite) and
their educations levels (lower than high school, high school,
or higher than high school). We then performed our test
using the local method for each group. Again, we com-
pute the maximum in the test statistics over the interval
[Q2.5%, Q97.5%].

Testing results for individual groups are reported in table
7. Note that the null hypothesis (H(5)

0 ) is rejected at sub-
group 5 of nonwhite persons with high school education at
the 10% and 5% levels, respectively, but not all three levels.
However, as shown in figure 1, it is likely due to the boundary
issue or small subgroup size. Therefore, we do not consider
this as strong evidence against H(5)

0 . Following the similar
arguments as in the same-sex application, we can indirectly
verify that we reject no null hypotheses with FWER con-
trolled at 10%.8 Kitagawa (2015) obtained the same result
without conditioning on subgroups.

7 The data are available from Angrist’s website. After removing all entries
with missing information, 3,071 individuals remain.

8 The testing procedure with linear specification on the conditional
expectation, however, rejects the null hypothesis at all three levels (see
table 5).
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Figure 1.—θ̂(·, 1) and θ̂(·, 1) − s(·, 1) × ĉV̂ ,0.95
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Table 8.—Summary Statistics of NLSYM Sample

Total D = 1 Z = 1
Observations 3,005 2,048 816

Lived in metro area in 1966 0.651 (0.476) 0.693 (0.461) 0.801 (0.399)
Lived in southern 0.414 (0.492) 0.313 (0.464) 0.329 (0.470)

states in 1966
Black 0.232 (0.422) 0.099 (0.299) 0.209 (0.407)
Years of schooling in 1976 13.26 (2.675) 16.692 (0.849) 13.532 (2.577)
D (education ≥ 16) 0.271 (0.444) 1.000 (0.000) 0.293 (0.455)
Z (college proximity) 0.681 (0.465) 0.736 (0.015) 1.000 (0.000)
Y (log wage in 1976) 6.261 (0.444) 6.428 (0.433) 6.311 (0.440)

Average (standard deviation).

C. The College Proximity Instrument

Card (1993) studied the causal effect of schooling on
earnings and employed college proximity as the exogenous
source of variation in eduction outcome. In this application,
Z = 1 denotes there is a four-year college in the local labor
market where the individual was born, and D = 1 denotes
the individual has at least sixteen years of education. The
outcome variable is the log wage in 1976. The monotonicity
under testing is D1 ≥ D0.

The data from the National Longitudinal Survey of Young
Men (NLSYM) began in 1966 with men aged 14 to 24 and
continued with a follow-up survey until 1981. Some sum-
mary statistics are reported in table 8.9 We considered three
binary control variables: lived in southern states in 1966,
lived in a metropolitan area in 1966, and being black. Table 9
reports the corresponding subgroup sizes.

We conduct the test on six subgroups. We exclude the
subgroup NS/NM/B because of its small sample size; we also
exclude subgroup NS/M/B because of the high frequency of
Z = 1 (92%). Note that the null hypothesis H(4)

0 is rejected
in subgroup 4 of nonblack men who lived in the metropolitan
area of the southern states, as well as for the whole sample at

9 We dropped 608 observations with missing wages.

Table 9.—Subgroup Sizes of Card (1993)

Nonblack (NB) Black (B)

Nonsouthern (NS) and Nonmetro (NM) 429 5
Nonsouthern (NS) and Metro (M) 1,191 138
Southern (S) and Nonmetro (NM) 307 314
Southern (S) and Metro (M) 380 246

Southern (south66): lived in southern states in 1966. Metro (smsa66r): lived in urban area in 1966.

the 0.5% level. No rejection happens with other subgroups
even at the 10% level. The results in table 10 imply that the
multiple testing procedure of Holm (1979) would conclude
that H0 is rejected with the FWER controlled by no more
than 0.5%×6 = 3%. The testing procedure with parametric
methods gives the same results.

Now it will be interesting to know on which subsets of Y
the null hypothesis is violated. Figure 2 plots the θ̂(·, 0) and
θ̂(·, 0)−s(·, 0)× ĉV̂ ,0.95 for subgroup 4 and the whole sample,
respectively. Note that θ0 is in general increasing in Y , and
the rejection takes place on higher-income subpopulations
(e.g., subpopulations whose observed log wage is around 7).
The density of log wage is reasonably high at this point, and
therefore the rejection is unlikely due to the boundary issue
of the local linear estimation.

To summarize, our result suggests that the Wald estimator
in such a case can be inconsistent. Thereby, although the
college proximity instrument seems good, researchers must
be aware that this instrument would not be a good one to use
when the treatment effect is heterogeneous.

VI. Extensions

In this section we discuss three ways of incorporat-
ing covariates X into the testing procedure. All three can
be implemented with the same test procedure proposed.
Let X be the support of X. We then make the following
assumptions:

Assumption 7. (Y1, Y0, D0, D1) ⊥ Z|X = x and P(D =
1|Z = 0, X = x) �= P(D = 1|Z = 1, X = x) for all x ∈ X .

Assumption 7 is common in the literature (see, e.g.,
Abadie, 2003), which requires the independence assump-
tion to hold conditional on X. Sometimes the independence
assumption between potential outcomes and potential treat-
ments may hold for some observed subgroups and not for
others. In such a case, researchers would be curious to know
for each observed group whether the independence assump-
tion holds. The following assumption could be used to model
this case:

Assumption 8. (Y1, Y0, D0, D1) ⊥ Z|X = x∗ and P(D =
1|Z = 0, X = x∗) �= P(D = 1|Z = 1, X = x∗).

In some contexts, the instrument can be strongly exoge-
nous in the following sense:
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Table 10.—Testing Results for the College Proximity Instrument

NB, NS, NM NB, NS, M NB, S, NM NB, S, M B, S, NM B, S, M All
Subgroup ID 1 2 3 4 5 6
Observations 429 1,191 307 380 314 246 3,005

5% NR NR NR R NR NR R
1% NR NR NR R NR NR R
0.5% NR NR NR R NR NR R

R: rejection; NR: no rejection.

Figure 2.—θ̂(·, 0) and θ̂(·, 0) − s(·, 0) × ĉV̂ ,0.95
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Assumption 9. (Y1, Y0, D0, D1, X) ⊥ Z and P(D = 1|Z =
0) �= P(D = 1|Z = 1).

Our test can be adapted to address all three cases, as
summarized by the following corollary:

Corollary 1. Suppose that assumptions 2 and 7 hold; then
for all (x, y) ∈ X × Y ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ(1)(x, y, 1) ≡ E[c1(x)D(1 − Z)

− c0(x)DZ|X = x, Y = y] ≤ 0

θ(1)(x, y, 0) ≡ E[c0(x)(1 − D)Z

− c1(x)(1 − D)(1 − Z)|X = x, Y = y] ≤ 0,

(7)

where cj(x) = P(Z = j|X = x).
If assumptions 2 and 8 hold, then for all y ∈ Y ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ(2)( y, 1) ≡ E[c1(x∗)D(1 − Z)

− c0(x∗)DZ|X = x∗, Y = y] ≤ 0

θ(2)( y, 0) ≡ E[c0(x∗)1(1 − D)Z

− c1(x∗)(1 − D)(1 − Z)|X = x∗, Y = y] ≤ 0.

(8)

If assumptions 2 and 9 hold, then for all (x, y) ∈ X × Y ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ(3)(x, y, 1) ≡ E[c1D(1 − Z)

− c0DZ|X = x, Y = y] ≤ 0

θ(3)(x, y, 0) ≡ E[c01(1 − D)Z

− c1(1 − D)(1 − Z)|X = x, Y = y] ≤ 0.

(9)

Proof. See section A.2 in the appendix.

The key difference between equations (7) and (9) is
whether the preestimated parameter cj depends on covariates
X. The null hypothesis H(k)

0 regarding bounding functions
θ(k) can be defined as

H(k)

0 : θ
(k)

0 ≡ sup
(x,y, j)∈X×Y×{0,1}

θ(k)(x, y, j) ≤ 0

for k = 1, 3, respectively, and

H(2)

0 : θ
(2)

0 ≡ sup
( y, j)∈Y×{0,1}

θ(3)( y, j) ≤ 0.
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In all three cases, our method is applicable because the esti-
mation rate for cj(·) or cj(x∗) is faster than the rate of the
bounding functions.

VII. Conclusion

In this paper we provide a reformulation of the testable
implications of the key identifying assumptions, LI and LM,
of the local average treatment effect, which was first tested
by Kitagawa (2008, 2015), with its characterization tracing
back to Balke and Pearl (1997) and Heckman and Vytlacil
(2005). We show that the testable implications can be writ-
ten as a set of conditional moment inequality restrictions,
which can be tested in the intersection bounds framework
of Chernozhukov, Lee, and Rosen (2013) and implemented
using the Stata package provided by Chernozhukov et al.
(2015). We apply the reformulated testing procedure to the
same-sex instrument, the draft eligibility instrument, and the
college proximity instrument, respectively. We found that
the joint assumption of LI and LM is rejected for the college
proximity instrument over some subgroups.
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APPENDIX

Proofs

Proof of Proposition 1

First, note that ĉ0 does not depend on y and supy∈Y |m̃( y)| < ∞ with
probability 1, and then it follows that

sup
y∈Y

|m̂( y) − m̃( y)| = Op

(
1√
n

)
,

where c0 = P(Z = 0), m( y) = E[c0DZ|Y = y], m̃( y) be the infeasible
local linear estimator, which takes c0 as known, and m̂( y) be the feasible
local linear estimator of m( y) in which c0 is replaced by its frequency
count ĉ0.

Given the above argument, it is sufficient to treat c0 and c1 as if they
were known. Recall that{

θ( y, 1) ≡ E[c1D(1 − Z) − c0DZ|Y = y] ≤ 0
θ( y, 0) ≡ E[c0(1 − D)Z − c1(1 − D)(1 − Z)|Y = y] ≤ 0

. (10)

Let L1
i = c1Di(1−Zi)−c0DiZi and L0

i = c0(1−Di)Zi −c1(1−Di)(1−Zi).
Let U(Wi, 1) = L1

i − θ(Yi, 1), U(Wi, 0) = L0
i − θ(Yi, 0), Û(Wi, 1) = L1

i −
θ̂(Yi, 1) and Û(Wi, 0) = L0

i − θ̂(Yi, 0). Define function gv(U, Y) as

g( y,k)(U, Y) = U(W , k)√
hf ( y)

K

(
Y − y

h

)
.

ĝv is defined similar to gv with, U and f being replaced by Û and f̂ ,
respectively.

We verify condition NK of CLR and then apply CLR theorem 6. To do
so, we first verify that conditions i to vi in CLR appendix F hold in our
context, which implies condition NK. We provide these conditions in our
notation below:

i. θ( y, 1) and θ( y, 0) are p + 1 times continuously differentiable with
respect to y ∈ Y , where Y is convex. Verify: Y being convex is stated
in assumption 4. In our context p = 1; therefore, we need to verify
that θ( y, 1) is twice continuously differentiable. Recall that θ( y, 1) =
E[L1|Y = y] and L1 is discrete. Let s be a generic realization of L1;
then θ( y, 1) = ∑

s sP(L1 = s|Y = y). So it is sufficient to verify that
P(L1 = s|Y = y) is twice continuously differentiable with respect
to y,

P(L1 = s|Y = y) = lim
ε→0

P(L1 = s, y − ε ≤ Y ≤ y + ε)

P( y − ε ≤ Y ≤ y + ε)

= lim
ε→0

P( y − ε ≤ Y ≤ y + ε|L1 = s)P(L1 = s)

P( y − ε ≤ Y ≤ y + ε)

= f ( y|L1 = s)P(L1 = s)

f ( y)
,

which is twice continuously differentiable by assumption 4.
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ii. The probability density function f of Yi is bounded above and below
from 0 with a continuous derivative on Y . Verify: This condition holds
by assumption 4.

iii. U(Wi, 1) and U(Wi, 0) are bounded random variables. Verify:
U(Wi, k) is bounded because Y , D, and Z are bounded.

iv. For each k ∈ {0, 1}, the conditional on Yi density of U(Wi, k) exists
and is uniformly bounded from above and below or, more generally,
condition R in appendix G (of CLR) holds. Verify: The (uncondi-
tional) density of U(W , k) exists (with respect to Lebesgue measure).
This is because we can write

P(U(W , 1) ≤ u) = P(L1 − θ(Y , 1) ≤ u)

=
∑

s

P(θ(Y , 1) ≥ s − u|L1 = s)P(L1 = s).

Since the density of Y given L1 exists and θ(Y , 1) is continuously
differentiable, we know the conditional density fθ(1) of θ(Y , 1) given
L1 exists as long as θ(·, 1) is a nontrivial measurable function. Tak-
ing the derivative with respect to u yields the marginal density of
U(W ,1);

fU(W ,1)(u) =
∑

s

fθ(1)(s − u)P(L1 = s).

Also note that the conditional distribution of U(W , 1) given Y = y is
discrete because L1 is discrete and therefore the condition iv trivially
holds for the conditional density of U(W , k) given Y = y (with respect
to counting measure). Indeed, our case is analogous to CLR, example
B, in that the random variable under the expectation operation is
discrete.

v. K(·) has support on [−1, 1] and is twice continuously differentiable:∫
uK(u)du = 0 and

∫
K(u)du = 1. Verify: Condition v is the

requirement on the choice of kernel function and is satisfied by many
popular kernels (e.g., Epanechnikov kernel). It holds by assumption 5.

vi. h → 0, nhd+|J |+1 → ∞, nhd+2( p+2) → 0, and
√

n−1h−2d → 0 at
polynomial rates in n. Verify: Note in our case |J | = 2, d = 1 and
p = 1; therefore, condition vi holds by assumption 6.

CLR show that CLR appendix conditions i to vi imply condition NK(i).
Condition NK(ii) holds for the standard nonparametric estimation methods.
Then we conclude that parts 1 and 3 of proposition 1 hold by CLR theorem 6,
a–i and iii, respectively; part 2 holds by CLR theorem 6 b–i,iii because the
contact set V0 = V ; therefore, CLR condition V and equation 4.6 hold with
ρn = 1, cn = ∞.

Proof of Corollary 1

We first verify equation (7). Under assumption 7, the first restriction,
equation (1), becomes

P(Y ∈ A, D = 1|Z = 0, X = x) ≤ P(Y ∈ A, D = 1|Z = 1, X = x),

∀x ∈ X ,

which is equivalent to

E[1Y∈A{D(1 − Z)c0(x) − DZc1(x)}|X = x] ≤ 0, ∀x ∈ X .

The results hold since the above inequality holds for all A ∈ BY and,
consequently, for the class of cubes. To verify equation 9, simply note that
under assumption 9, we have for all B ∈ BY×X ,

P((Y , X) ∈ B, D = 1|Z = 0) ≤ P((Y , X) ∈ B, D = 1|Z = 1).

The result follows.
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