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Abstract

Instrumental variables (IV) are widely used in economics to address selection
on unobservables. Standard IV methods produce estimates of causal effects
that are specific to individuals whose behavior can be manipulated by the
instrument at hand. In many cases, these individuals are not the same as
those who would be induced to treatment by an intervention or policy of
interest to the researcher. The average causal effect for the two groups can
differ significantly if the effect of the treatment varies systematically with
unobserved factors that are correlated with treatment choice. We review the
implications of this type of unobserved heterogeneity for the interpretation
of standard IV methods and for their relevance to policy evaluation. We
argue that making inferences about policy-relevant parameters typically re-
quires extrapolating from the individuals affected by the instrument to the
individuals who would be induced to treatment by the policy under con-
sideration. We discuss a variety of alternatives to standard IV methods that
can be used to rigorously perform this extrapolation. We show that many of
these approaches can be nested as special cases of a general framework that
embraces the possibility of partial identification.
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1. INTRODUCTION

Instrumental variables (IV) methods are widely used in empirical work in economics and other
fields. Their attraction stems from the hope that an instrument provides a source of exogenous
variation that can be used to infer the causal effect of an endogenous treatment variable on an
outcome of interest. IV methods attack the problem of selection on unobservables by using only
variation in the treatment that is induced by the instrument. However, this variation only rep-
resents individuals whose treatment choice would be affected by changes in the instrument. As a
consequence, standard IV methods, such as two-stage least squares (TSLS), produce estimates of
causal effects that are specific to these individuals.

The goal of this article is to review IV methods that can be used to make inferences about
causal effects for individuals other than those affected by the instrument at hand. This requires
extrapolating away from the variation in treatment induced by the available instrument. There are
at least two common empirical situations in which such extrapolation is needed.

The first is when the instrument is based on the lack of pattern or predictability in a natural
event that cannot be shifted by policy, such as the weather (Angrist et al. 2000, Miguel et al. 2004) or
the gender composition of children (Angrist & Evans 1998, Black et al. 2005). Instruments derived
from such natural experiments have gained popularity over the past few decades, in part because it
is often relatively easy to argue that the instrument is exogenous. However, this advantage comes
at the cost of external validity. In particular, the group of individuals whose behavior is affected
by a natural experiment is often different from the group of individuals who would be affected
under an interesting policy counterfactual. If the causal effect of the treatment varies between the
two groups, then the estimates produced by standard IV methods can differ dramatically from
the parameters relevant for the policy counterfactual.1 Methods for extrapolation can be used to
rigorously address this critique by analyzing the sensitivity of the empirical conclusions to the size
or composition of the group affected by the natural experiment.

A second setting in which extrapolation is needed is one in which the instrument represents a
policy change, and the researcher is interested in the effect of expanding or contracting the policy.
In this case, standard IV methods already identify the causal effect for individuals whose treatment
choice is affected by the past policy change. However, using the past policy change to inform
about a new counterfactual change under which the policy is expanded requires extrapolation. For
example, Evans & Ringel (1999) show that smoking during pregnancy declines when state-level
taxes on cigarettes are increased. They use these results to form an IV estimate of the impact of
maternal smoking on birth weight. Their IV estimate can be interpreted as an average causal effect
for mothers whose smoking behavior was changed as a result of the small tax changes observed in
their data. Among the states that changed cigarette taxes during the sample period, the average
difference in taxes was only approximately $0.05 per pack. Yet Evans & Ringel (1999) use their IV
estimate to draw conclusions about a proposed bill that would raise cigarette taxes by $1.10 per
pack. To conduct this exercise coherently requires rigorously extrapolating the causal effect for
mothers with high price elasticity to those who are less price elastic.

The structure of our review is as follows. In Section 2, we review a widely studied IV model
with a binary treatment. The model maintains the existence of an exogenous instrument that
has a monotonic effect on treatment in the sense developed by Imbens & Angrist (1994). This

1Several studies in diverse fields report evidence of unobserved heterogeneity in causal effects. Heckman (2001) compiles a
list of studies performed prior to 2001. More recent work includes that of Bitler et al. (2006, 2014), Doyle (2007), Moffitt
(2008), Carneiro & Lee (2009), Firpo et al. (2009), Carneiro et al. (2011, 2016), Maestas et al. (2013), Walters (2014), Felfe
& Lalive (2014), French & Song (2014), Havnes & Mogstad (2015), Kirkeboen et al. (2016), Kline & Walters (2016), Hull
(2016), Cornelissen et al. (2018), Nybom (2017), and Brinch et al. (2017), among many others.
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monotonicity condition gives rise to the important related concepts of the marginal treatment
effect and response functions developed by Heckman & Vytlacil (1999, 2005). Our review focuses
on this model due to its central role in the recent literature on IV methods.

In Section 3, we introduce a general definition of a target parameter as a weighted average
of the marginal treatment response functions. We view the target parameter as an object chosen
by the researcher to answer a specific well-defined policy question. We argue in Section 3, and
throughout the review, that some conventional treatment parameters, such as the average treat-
ment effect, often represent uninteresting policy counterfactuals and thus make for uninteresting
target parameters. We recommend that researchers focus instead on target parameters in the
class of policy-relevant treatment effects (PRTEs) introduced by Heckman & Vytlacil (2001a).
These parameters allow researchers to consider interventions that influence (but may not fully
determine) an individual’s treatment choice, for example by changing the costs associated with
the treatment. We discuss specific examples of PRTEs and show that the local average treatment
effect (LATE) of Imbens & Angrist (1994) can be viewed as a special case of a PRTE.

In Section 4, we discuss two conditions under which the target parameter is already point
identified and no extrapolation is needed. We argue that both of these conditions are too restrictive
for many settings that involve policies that represent meaningful departures from the status quo.
Evaluating such a policy requires extrapolating from the individuals whose treatment choice is
affected by the available instrument to the individuals whose treatment choice would be affected
by the policy.

This need to extrapolate motivates Section 5, where we consider a general framework proposed
by Mogstad et al. (2017) in which data and a priori assumptions can be flexibly combined to produce
bounds on PRTEs and other target parameters. We show that the tightness of the bounds—that
is, the strength of the conclusions that one can obtain—naturally depends both on the extent of
extrapolation required and on the strength of the assumptions that are maintained. As a result,
the framework allows the researcher to achieve bounds that are as narrow as they desire, while
requiring them to honestly acknowledge the strength of their assumptions and the degree of
extrapolation involved in their counterfactual. In Section 6, we discuss the relationship between
the general framework of Mogstad et al. (2017) and previous work, showing that the general
framework nests several previous approaches to extrapolation as special cases. In Section 7, we
summarize and conclude with some directions for future research.

Our review focuses on the identification problem of using the distribution of the observed
data to learn about parameters of interest. In practice, researchers do not know the population
distribution of the observed data with certainty. Features of this distribution need to be estimated
from the available sample, and most researchers would agree that it is important to formally account
for statistical uncertainty in these estimates. We set these issues of statistical inference aside in
our review. We view the identification problem as both distinct from and primary to the problem
of statistical inference, since the conclusions that one can draw under imperfect knowledge of the
population distribution of the data are a subset of those that can be drawn under perfect knowledge.
Having said this, the general framework that we discuss in Section 5 involves some challenges for
statistical inference. Mogstad et al. (2017) provide a discussion of these challenges and develop a
method for addressing them.

2. MODEL

2.1. Potential Outcomes and Endogeneity

Our discussion focuses on the canonical program evaluation problem with a binary treatment D ∈
{0, 1} and a scalar, real-valued outcome Y . Corresponding to the two treatment arms are potential
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outcomes Y0 and Y1. These represent the realizations of Y that would have been experienced by an
individual had their treatment status been exogenously set to 0 or 1, respectively. The relationship
between observed and potential outcomes is given by

Y = DY1 + (1 − D)Y0. 1.

In economic applications with observational data, it is often implausible to assume that D is
exogenously determined relative to Y0 and Y1, especially if D is a choice variable. When D is
endogenous, comparing the distribution of Y for the treated (D = 1) and control (D = 0) groups
confounds the effect of the treatment with other differences between these groups. Conditioning
on observed covariates, X , can conceivably unconfound the effect of D on Y . However, one often
expects that there are important factors that influence the choice of D, such as an individual’s
beliefs about Y0 and Y1, that are fundamentally difficult to observe and therefore not part of X .
The idea of an IV method is to use the variation from an instrument, Z, to indirectly shift D while
holding X fixed. If Z is exogenous, then the resulting variation in Y is solely due to the causal effect
of D on Y , i.e., from the difference between Y1 and Y0.

2.2. Selection Into Treatment

A key theme of the literature, and of this review, is that considering how Z affects the choice of
D is crucial when there is unobserved heterogeneity in the causal effect of D on Y . Intuitively, if
different individuals stand to gain or lose differently from receiving treatment, then it is important
to model which individuals select into treatment.

In an influential paper, Imbens & Angrist (1994) introduce a simple model of treatment choice
summarized by what they call the monotonicity condition. This condition says that, given X ,
an exogenous shift of Z from one value to another either weakly increases the choice of D for
every individual or weakly decreases it for every individual. Vytlacil (2002) shows that, under the
standard exogeneity assumption on Z, the monotonicity condition is equivalent to the existence
of a weakly separable selection (or choice) equation,

D = 1[ν(X , Z) − U ≥ 0], 2.

where ν is an unknown function and U is a continuously distributed random variable. The Imbens
& Angrist (1994) monotonicity condition can be seen clearly to arise from Equation 2, since the
separability between ν(X , Z) and U implies that a change in Z induces a shift either toward or
away from treatment for all values of U .

Our review focuses on approaches that maintain this monotonicity condition or, equivalently,
the choice model in Equation 2. This model is widely used, but of course, it is not beyond criticism.
In Section 6.5, we compare these approaches with another influential framework for extrapolation
that does not maintain a choice model and therefore does not use the monotonicity condition.
Our view is that maintaining some choice model (although not necessarily Equation 2) is crucial
for considering counterfactual policies that do not mandate a choice of treatment.

The period since Imbens & Angrist (1994) has witnessed the evolution of a large literature
that explores the implications of Equation 2 for IV methods. The following set of assumptions are
commonly maintained in this literature. We maintain them throughout our discussion, as well.2

Assumption 1. D is determined by Equation 2.

2Our discussion also requires some mild technical conditions involving the existence of moments that we do not explicitly
mention but that are clear from the context.

580 Mogstad · Torgovitsky

A
nn

u.
 R

ev
. E

co
n.

 2
01

8.
10

:5
77

-6
13

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

- 
B

od
le

ia
n 

L
ib

ra
ry

 o
n 

08
/1

0/
22

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EC10CH21_Mogstad ARI 29 June 2018 13:58

Assumption 2. (Y0, Y1, U ) ⊥⊥ Z|X holds true, where ⊥⊥ denotes conditional
independence.

Assumption 3. U is continuously distributed, conditional on X .

Assumption 2 requires Z to be exogenous with respect to both the selection and outcome
processes after conditioning on covariates, X . If one is only concerned with mean outcomes, then
this assumption can be weakened to the combination of U ⊥⊥ Z|X and E[Yd |U , X , Z] = E[Yd |U , X ]
for d = 0, 1. In applications, it can be difficult to think of reasons for which this weaker assumption
would hold while Assumption 2 would fail. For simplicity, we maintain the stronger assumption
throughout our discussion.

Given Assumption 3, one can normalize the distribution of U |X = x to be uniformly dis-
tributed over [0,1] for every x.3 Under this normalization, and given assumption 2, it is straight-
forward to show that ν(x, z) is equal to the propensity score,

p(x, z) ≡ P [D = 1|X = x, Z = z]. 3.

Therefore, the normalization allows Equation 2 to be rewritten as

D = 1[U ≤ p(X , Z)], where U |X = x, Z = z ∼ Unif[0, 1] for all x, z. 4.

Working with Equation 4 instead of Equation 2 simplifies the subsequent expressions without
changing the empirical implications of any of the results that we discuss. It is worth repeating
that the work of Vytlacil (2002) proves that Equation 4, together with the assumptions above, is
equivalent to the influential IV model introduced by Imbens & Angrist (1994).

2.3. Marginal Treatment Effect and Response Functions

An important unifying concept for IV methods that maintain the weakly separable choice model
(Equation 4) is the marginal treatment effect (MTE), which was developed in a series of papers
by Heckman & Vytlacil (1999; 2001a,b,c; 2005; 2007a,b).4 The MTE is defined as

MTE(u, x) ≡ E[Y1 − Y0|U = u, X = x]. 5.

In words, MTE(u, x) is the average causal effect of D on Y for individuals with selection unob-
servable U = u and observed characteristics X = x.

The dependence of the MTE on u for a fixed x allows for unobserved heterogeneity in treat-
ment effects, as indexed by an individual’s latent propensity to choose treatment, u. The choice
equation (Equation 4) implies that, given X , individuals with lower values of U are more likely
to take treatment, regardless of their realization of Z.5 An MTE function that is declining in u
would therefore indicate that individuals who are more likely to choose D = 1 also experience
larger gains in Y from receiving the treatment. The case of no unobserved treatment effect het-
erogeneity corresponds to an MTE function that is constant in u. Similarly, observed treatment
effect heterogeneity is described through the dependence of the MTE function on x for a fixed u.

3This type of normalization argument appears in many guises in the literature on nonparametric identification. It is one of
many possible normalizations (for a complete discussion, see, e.g., Matzkin 2007).
4As Heckman & Vytlacil recognize, the key ideas behind the MTE can be found in an earlier paper by Björklund & Moffitt
(1987), albeit in a parametric context.
5This is only a convention; if Equation 2 were written instead as 1[ν(X , Z) + U ≥ 0], then higher values of U would be more
likely to take treatment.
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Instead of working with the MTE function directly, we consider treatment parameters that
can be expressed as functions of the two marginal treatment response (MTR) functions, defined
as

m0(u, x) ≡ E [Y0 | U = u, X = x] and m1(u, x) ≡ E [Y1 | U = u, X = x] . 6.

Each pair m ≡ (m0, m1) of MTR functions generates an associated MTE function m1(u, x) −
m0(u, x), so there is no cost in generality from working with MTR functions directly. As we dis-
cuss below, an important advantage of working with MTR functions instead of MTE functions
is that it allows one to consider parameters and estimands that depend on m0 and m1 asymmet-
rically. For example, the ordinary least squares (OLS) estimand can be written as a weighted
average of m0 and m1, whereas this interpretation is not available when working only with their
difference.

2.4. A Running Numerical Illustration

Throughout this review, we use a running numerical example to provide graphical explanations
of the key concepts. The example is loosely based on the empirical application of Mogstad et al.
(2017). They analyze how a class of potential subsidy regimes can promote the use of a preventive
health product and compare increases in usage to the costs of subsidization. In their application,
D is a binary indicator for purchasing a mosquito net (the health product), Z is an experimentally
varied subsidy for the net, and (for simplicity) there are no covariates X . The data are taken from
Dupas (2014) and feature a variety of different subsidy levels.

For the numerical illustration, we bin these subsidies into four ascending groups, so that
Z ∈ {1, 2, 3, 4}, with Z = 4 denoting the most generous subsidy. The groups are approximately
equally likely, so we take P [Z = z] = 1/4 for each of z = 1, 2, 3, 4. We take the propensity
score in our simulation to be equal to the estimated propensity score in the data, which is given
by

p(1) = 0.12, p(2) = 0.29, p(3) = 0.48, and p(4) = 0.78.

We take the outcome in our numerical example to be binary, i.e., Y ∈ {0, 1}. To fix ideas, we think
of Y as an indicator for whether an individual is infected by malaria. To generate the distribution
of Y , we set the MTR (and implied MTE) functions to be quadratic in u:

m0(u) = 0.9 − 1.1u + 0.3u2 and m1(u) = 0.35 − 0.3u − 0.05u2,

so that m1(u) − m0(u) = −0.55 + 0.8u − 0.35u2. 7.

As shown in Figure 1, these MTR functions are decreasing in u for both the treated and
untreated states. Recalling that higher values of u correspond to lower propensities to choose
treatment, this means that individuals less likely to purchase the mosquito net are also less likely
to be afflicted by malaria regardless of whether they purchase the mosquito net. This situation
could arise because individuals differ in their degree of susceptibility to malaria and have some
private knowledge of their personal vulnerability to the disease. Figure 1 shows that the m1

function is smaller than the m0 function for all values of u, which means that the mosquito net
reduces the incidence of malaria for all individuals. However, the difference between m1 and m0

(the MTE) is nonconstant and is larger for individuals who are more likely to purchase the net.
This increasing pattern in m1 − m0 could arise if individuals have private knowledge of how likely
they are to benefit from a mosquito net—for example, due to the prevalence of mosquitoes in their
sleeping areas—and partly base their purchase decisions on this knowledge.
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Figure 1
Marginal treatment response and marginal treatment effect functions used to generate data in the running
numerical illustration.

3. WHAT WE WANT TO KNOW: TARGET PARAMETERS

3.1. Definition

Before considering identification, the researcher needs to define their parameter of interest, which
we refer to as the target parameter, β�. We assume that the researcher has a specific, well-defined
policy question that they are interested in, and that this question suggests one or more relevant
target parameters. A central theme of our discussion is that different target parameters can be
relevant for different applications and policy questions. This motivates a framework in which
the researcher is allowed wide latitude in how they can specify the target parameter. To do this,
we only require that β� can be written as a weighted average of the unknown MTR functions.
Formally, we assume that

β� ≡ E
[∫ 1

0
m0(u, X )ω�

0(u, X , Z) du
]

+ E
[∫ 1

0
m1(u, X )ω�

1(u, X , Z) du
]

8.

for some identified weighting functions ω�
0 and ω�

1.
Different target parameters are generated by choosing different pairs of (ω�

0, ω�
1). We discuss

several types of target parameters in the sections below. The tables below provide an extensive
catalog of the weighting functions that correspond to these parameters. Of course, it is impossible
to specify the universe of target parameters that could be of possible interest for an application.
Fortunately, deriving the weighting functions (ω�

0, ω�
1) that generate a given parameter can be

accomplished relatively easily by appropriately modifying the arguments of Heckman & Vytlacil
(2005).6

6Most of the expressions in Tables 1–4 can be found in the work of Heckman & Vytlacil (2005). The expressions for
parameters with asymmetric weights (i.e., m0 �= −m1) are derived by Mogstad et al. (2017). Note also that Mogstad et al.
(2017) consider a slightly more general version of Equation 8 in which the integrating measure (i.e., du) can be something

www.annualreviews.org • Identification and Extrapolation of Causal Effects 583

A
nn

u.
 R

ev
. E

co
n.

 2
01

8.
10

:5
77

-6
13

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

- 
B

od
le

ia
n 

L
ib

ra
ry

 o
n 

08
/1

0/
22

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EC10CH21_Mogstad ARI 29 June 2018 13:58

Table 1 Weights for conventional treatment effect parameters

Weights

Target parameter Expression ω�
0(u, x, z) ω�

1(u, x, z)

Average untreated outcome E[Y0] 1 0

Average treated outcome E[Y1] 0 1

ATE E[Y1 − Y0] −1 1

ATE given X = x, where P [X = x] > 0 E[Y1 − Y0|X = x] −ω�
1(u, x, z) 1[x = x]

P [X = x]

ATT E[Y1 − Y0|D = 1] −ω�
1(u, x, z) 1[u ≤ p(x,z)]

P [D = 1]

ATU E[Y1 − Y0|D = 0] −ω�
1(u, x, z) 1[u > p(x,z)]

P [D = 0]

LATE for z0 → z1 given X = x,
where p(x, z1) > p(x, z0)

E[Y1 − Y0|p(x, z0) < U ≤
p(x, z1), X = x]

−ω�
1(u, x, z) 1[p(x,z0) < u ≤ p(x,z1)]

p(x,z1) − p(x,z0)

Abbreviations: ATE, average treatment effect; ATT, average treatment on the treated; ATU, average treatment on the untreated; LATE, local average
treatment effect.

3.2. Conventional Target Parameters

The average treatment effect (ATE) is a widely studied target parameter. As shown in Table 1,
the ATE can be written as Equation 8 by specifying the weight functions as ω�

1(u, x, z) = 1
and ω�

0(u, x, z) = −1. This equally weights the individual-level treatment effects regardless of
differences across individuals. The ATE can be interpreted as the average change in outcomes
that would be realized if all individuals were required to choose D = 1, compared to the regime
in which all individuals are required to choose D = 0.

Another commonly considered target parameter is the average treatment on the treated (ATT).
Figure 2 plots the average of the d = 1 weights over observables, i.e., E[ω�

1(u, X , Z)], as a function
of u for the ATT and several other conventional target parameters listed in Table 1 for our running
numerical example. All of the parameters in Table 1 have symmetric weights in the sense that
ω�

0(u, x, z) = −ω�
1(u, x, z), so we only plot the average weights for d = 1. Figure 2 shows that

the average weights for the ATT are decreasing in u, indicating that this parameter places more
weight on individuals that are more likely to choose D = 1. This property can be confirmed by
using the corresponding formula in Table 1 to compute

E
[
ω�

1(u, X , Z)
] = E[1[p(X , Z) ≥ u]]

P [D = 1]
= P [p(X , Z) ≥ u]

P [D = 1]
, 9.

which is necessarily decreasing as a function of u.
The ATT provides the average change in outcomes that would be experienced by the treated

group if it switched from a regime in which the treatment is optional to a regime that forbids
treatment. This counterfactual can be relevant for evaluating optional government programs,
such as active labor market programs, since it measures the benefit to those who choose (or
are chosen) to receive training (Heckman & Smith 1998). Similarly, the average treatment on
the untreated (ATU) measures the average increase in outcomes that would be experienced by
the control group if treatment were made mandatory. This counterfactual would be relevant for
evaluating the impact of requiring nonparticipants to participate in a program.

other than the Lebesgue measure. For example, this allows one to define the target parameter to be the MTE at a given value
ũ, i.e., β� = E[m1(̃u, X ) − m0(̃u, X )].
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LATE2      3

Figure 2
Weights for conventional target parameters in the running numerical illustration. The horizontal axis
indexes the average weight functions by unobserved heterogeneity in treatment choice u ∈ [0, 1], with
smaller values of u corresponding to individuals that are more likely to choose D = 1 (see Equation 4). The
vertical axis reports the average of the d = 1 weights E[ω�

1(u, X , Z)] in regions where they are nonzero.
Abbreviations: ATE, average treatment effect; ATT, average treatment on the treated; ATU, average
treatment on the untreated; LATE, local average treatment effect.

The ATE, ATT, and ATU can all be defined without reference to the choice model
(Equation 4).7 Maintaining a choice model allows one to also consider parameters that are defined
in terms of choice behavior under actual or counterfactual manipulations of the instrument. An
important and well-known example of such a parameter is the LATE, which was first studied by
Imbens & Angrist (1994). The LATE is informative about the average causal effect for the set of
individuals whose choice of D would be altered by a given change in the instrument.

For example, Table 1 shows the weights for the LATE that corresponds to an instrument
shift from Z = z0 to Z = z1, with p(x, z1) > p(x, z0) and conditional on X = x. These weights
are only nonzero over the region (p(x, z0), p(x, z1)]. Examining Equation 4, one can see that this
region corresponds to realizations of U for which an individual with X = x would choose D = 1
if assigned Z = z1 but would choose D = 0 if assigned Z = z0. Imbens & Angrist (1994) refer to
this unobservable subgroup as the (z0 to z1) compliers. In the next section, we show that LATEs
are specific examples of the more general concept of a PRTE.

3.3. Policy-Relevant Treatment Effects

The ATE, ATT, and ATU all measure the average effect on outcomes for policy counterfactuals
that hypothesize mandating a choice of treatment. The relevance of these parameters, as well as
the policy counterfactuals that they address, is dubious when requiring or preventing treatment is

7However, as we demonstrate in Sections 5 and 6, the choice model facilitates thinking about identification of these parameters
as an extrapolation problem.
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conceptually or ethically infeasible. Indeed, many policy discussions are focused on interventions
that change the costs or benefits of choosing certain activities while still allowing individuals to
freely select into these activities.

For example, consider the important empirical question of the labor market returns to investing
in human capital, say, through enrolling in higher education (D = 1). The ATE, ATT, and
ATU all correspond to counterfactuals that conjecture mandating enrollment or nonenrollment
in higher education. These parameters do not speak to ongoing debates over higher education
policy. Instead, these debates are about interventions that influence the decision to enroll in
higher education, for example, by increasing the availability of colleges or expanding student loan
or tuition subsidies.

Another example, considered in more depth by Mogstad et al. (2017), is the decision to own
a mosquito net (D = 1). This is an important preventive health care measure in many parts of
the developing world. Mandating nonownership—which is implicitly conjectured in the ATE
and ATT—is not an interesting counterfactual. The ATU conjectures mandating ownership,
which is perhaps conceivable through a policy of free provision, although this would still require
full take-up. A more feasible, interesting, and relevant policy intervention would be to provide
subsidies to purchase a mosquito net, taking into account the potential benefits of usage and costs
of subsidization.8

A choice model like Equation 4 provides a framework for considering the effect of a policy
intervention that influences (but may not fully determine) choice behavior. We follow Heckman
& Vytlacil (1999, 2005) in considering policies that change the propensity score, p , and/or the
instrument, Z, but that are assumed to have no impact on the model unobservables, (Y0, Y1, U ),
or the observed covariates, X . For example, this assumption requires that a policy that alters the
effective price of a mosquito net—modeled here as changing p and/or Z—would have no impact
on the latent propensity to buy a mosquito net, U , or on whether an individual would be afflicted
by malaria in either treatment state, (Y0, Y1). A policy a in this class can be summarized by a pair
(pa , Z a ), consisting of a function pa that maps (X , Z a ) to [0, 1] and a random variable Z a that
satisfies assumption 2 (see Section 2.2). Both the function, pa , and the joint distribution of (X , Z a )
are assumed to be known or identified.

A policy with these properties generates random variables representing treatment choice and
outcomes under the policy. Treatment choice under a policy a is given by

D a ≡ 1[U ≤ pa (X , Z a )]. 10.

The outcome of Y that would be observed under policy a is therefore

Y a = Da Y1 + (1 − Da )Y0. 11.

Given two policies, a1 and a0, Heckman & Vytlacil (1999, 2005) define the PRTE of a1 relative
to a0 as

PRTE ≡ E[Y a1 ] − E[Y a0 ]
E[Da1 ] − E[Da0 ]

, 12.

where it is assumed that E[Da1 ] �= E[Da0 ], i.e., that the policy change also changes the overall
proportion of individuals who receive treatment.9

8For example, Dupas et al. (2016) provide a discussion of various policies that promote access to (and usage of ) preventive
health products. None of these policies involve mandating ownership or usage of preventive health products.
9The purpose of this assumption is simply to adjust the units of the PRTE to be per net change in treatment participation.
If this assumption is questionable, then one can alternatively define the PRTE as E[Y a1 ] − E[Y a0 ] (see Carneiro et al. 2010,
pp. 380–81; Heckman & Vytlacil 2001a).

586 Mogstad · Torgovitsky

A
nn

u.
 R

ev
. E

co
n.

 2
01

8.
10

:5
77

-6
13

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

- 
B

od
le

ia
n 

L
ib

ra
ry

 o
n 

08
/1

0/
22

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EC10CH21_Mogstad ARI 29 June 2018 13:58

Table 2 Weights for PRTEs

Target parameter Expression ω�
1(u, x, z) = −ω�

0(u, x, z)

Generalized LATE for U ∈ (u, u] E[Y1 − Y0|U ∈ (u, u]] 1[u ∈ (u,u]]

u − u

PRTE for policy (pa1 , Za1 ) relative to
policy (pa0 , Za0 )

E[Y a1 ]−E[Y a0 ]

E[D a1 ]−E[D a0 ]

P [u ≤ pa1 (x,Za1 )|X = x] − P [u ≤ pa0 (x,Za0 )|X = x]

E[pa1 (X ,Za1 )] − E[pa0 (X ,Za0 )]

Additive PRTE with magnitude α PRTE with Z� = Z and
p�(x, z) = p(x, z) + α

1[u ≤ p(x,z) + α] −1[u≤p(x,z)]
α

Proportional PRTE with magnitude α PRTE with Z� = Z and
p�(x, z) = (1 + α)p(x, z)

1[u ≤ (1 + α)p(x,z)] −1[u ≤ p(x,z)]

αE[p(X ,Z)]

PRTE for an additive α shift of the j th
component of Z

PRTE with Z� = Z + αej and
p�(x, z) = p(x, z)

1[u ≤ p(x,z+ αej )] −1[u ≤ p(x,z)]

E[p(X ,Z + αej )] − E[p(X ,Z)]

Abbreviations: LATE, local average treatment effect; PRTE, policy-relevant treatment effect.

3.4. Examples of Policy-Relevant Treatment Effects

PRTEs can be expressed as target parameters with the same form as Equation 8. The choice
of weights, (ω�

0, ω�
1), depends on the policies being compared.10 Table 2 shows how different

policy comparisons translate into different weights by way of three specific examples considered
by Carneiro et al. (2011). Each of the examples sets a1 to be a hypothetical policy and takes
a0 to be the status quo policy observed in the data, i.e., (pa0 , Za0 ) = (p , Z). The hypothetical
policies are (a) an additive α change in the propensity score, i.e., pa1 = p + α; (b) a propor-
tional (1 + α) change in the propensity score, i.e., pa1 = (1 + α)p ; and (c) an additive α shift in
the distribution of the j th component of Z, i.e., Za1 = Z + αej, where ej is the j th unit vec-
tor. The first and second of these policies increase (or decrease) participation in the treatment
by a given amount α or a proportional amount (1 + α). The third policy represents the effect
of shifting the distribution of an exogenous variable that impacts treatment choice, such as a
subsidy.

In all of these definitions, α is a quantity that could be either estimated or hypothesized by the
researcher. Mogstad et al. (2017) consider PRTEs of the first type, and they estimate the value of
α by parametrically extrapolating a demand curve fit off of experimentally varied prices. Since α

is interpretable in terms of the change of treatment participation probability, a simpler approach
is to specify a value of α that represents an empirically interesting change in the probability of
choosing treatment.

3.5. Local Average Treatment Effects Are Policy-Relevant Treatment Effects

The LATE is a particular example of a PRTE. To see this, suppose for simplicity that there are no
covariates X , and consider the PRTE that results from comparing a policy a1, under which every
individual receives Z = z1, against a policy a0, under which every individual receives Z = z0.11

10Note that these weights are identified given the assumption that both pa and the distribution of (X , Za ) are known or
identified with Za ⊥⊥ U |X for a = a0, a1.
11More formally, let pa0 = pa1 = p , and take Za1 and Za0 to be deterministically equal to z1 and z0, respectively.
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Choices under these policies are

Da0 ≡ 1[U ≤ p(z0)] and Da1 ≡ 1[U ≤ p(z1)],

where p(z1) > p(z0) are the propensity score values in the observed data. The PRTE for this
policy comparison is

E[Y a1 − Y a0 ]
E[Da1 − Da0 ]

= E [(Da1 − Da0 )(Y1 − Y0)]
p(z1) − p(z0)

= E [Y1 − Y0 | p(z0) < U ≤ p(z1)] , 13.

where we use Da1 − Da0 = 1[p(z0) < U ≤ p(z1)]. The right-hand side of Equation 13 is precisely
the z0 to z1 LATE introduced by Imbens & Angrist (1994).

More generally, Heckman & Vytlacil (2005) define a LATE as E[Y1 − Y0|U ∈ (u, u]] for
two values u and u. We refer to this parameter as a counterfactual LATE to distinguish it from
a LATE for which u and u are given by values of the observed propensity score. The weights
for a counterfactual LATE are shown in Table 2. They are equally weighted over (u, u], zero
elsewhere, and scaled to integrate to 1.

3.6. Extrapolating Local Average Treatment Effects

Viewing the LATE as a specific example of a more general class of parameters is useful for thinking
about parameters that represent subpopulations other than the compliers under the observed
instrument. For example, suppose that a researcher wants to perform a sensitivity analysis to
investigate the robustness of the z0 to z1 LATE to an expansion (or contraction) of the complier
subpopulation. For this purpose, we define right- and left-hand α-extrapolations of the z0 to z1

LATE as

LATE+
z0→z1

(α) ≡ E [Y1 − Y0 | p(z0) < U ≤ p(z1) + α] ,

LATE−
z0→z1

(α) ≡ E [Y1 − Y0 | p(z0) − α < U ≤ p(z1)] . 14.

Similarly, we define a two-sided α-extrapolation as

LATE±
z0→z1

(α) ≡ E
[

Y1 − Y0

∣∣∣∣ p(z0) − α

2
< U ≤ p(z1) + α

2

]
. 15.

These parameters are defined over subgroups that take the z0 to z1 complier group and expand
it by α to the left, to the right, or in a split between both sides. One could also allow α < 0 in
Equations 14 and 15, in which case the parameters would be interpolated LATEs.

Imbens & Angrist (1994) show that the z0 to z1 LATE is nonparametrically point identified
for any observed z0 and z1 as long as p(z1) > p(z0). This result has produced a focus on these
types of LATEs as parameters of interest. Since these LATEs only reflect causal effects for z0

to z1 compliers, their external validity (or generalizability) can be limited (Imbens 2010). Some
authors have criticized the practice of focusing on parameters with limited external validity (see,
e.g., Heckman 1996, 1997, 2010). Analyzing extrapolated LATEs allows one to bridge these two
viewpoints, since it provides a precise way to gauge this lack of external validity. In particular,
the extent to which a given LATE is externally valid depends on how different it can be from the
extrapolated LATEs as α increases. As α → 0, an extrapolated z0 to z1 LATE reduces back to the
usual z0 to z1 LATE.

Figure 3 illustrates this point for the Z = 2 to Z = 3 LATE in our running numerical example.
The figure contains the values of the left-hand, right-hand, and two-sided extrapolations of this
LATE as functions of the size of the extrapolation, α. As α increases from 0, these parameters cover
increasingly large subpopulations. Figure 3 shows that the Z = 2 to Z = 3 LATE is sensitive
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Figure 3
Extrapolated LATEs in the running numerical illustration. Abbreviation: LATE, local average treatment
effect.

to extrapolation to either the left or the right but relatively insensitive when extrapolating on
both sides simultaneously. For certain values of α, an extrapolated LATE can reduce to another
ordinary LATE. For example, when α = p(4)− p(3), the right-hand extrapolated Z = 2 to Z = 3
LATE is equal to the usual Z = 2 to Z = 4 LATE, as indicated in Figure 3.

4. WHEN IS THE TARGET PARAMETER NONPARAMETRICALLY
POINT IDENTIFIED?

Once the researcher has defined the target parameter, the next step is to consider its identification.
In this section, we consider two commonly discussed settings in which the target parameter is point
identified without any additional assumptions. No extrapolation is necessary in these special cases.

4.1. When the Target Parameter Is a Local Average Treatment Effect

Imbens & Angrist (1994) show that, under Assumptions 1–3 and their monotonicity condition
(which, again, is equivalent to Equation 4), the z0 to z1 LATE, conditional on X = x, is point
identified by the Wald estimand, i.e.,

E [Y1 − Y0|p(x, z0) < U ≤ p(x, z1), X = x]

= E[Y |X = x, Z = z1] − E[Y |X = x, Z = z0]
E[D|X = x, Z = z1] − E[D|X = x, Z = z0]

.

The LATE may be an interesting target parameter if the observed instrument variation from z0

to z1 represents an intervention or policy change. For example, Angrist & Krueger (1991) report
estimates of a LATE for which D is attaining an additional year of schooling, Y is a measure of
future earnings, and the shift from z0 to z1 represents the impact of a compulsory schooling law.
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This parameter would clearly be useful for evaluating how compulsory schooling laws affect labor
market outcomes through their impact on raising educational attainment.

However, in many other situations, the observed variation in the instrument might be distinctly
different than the variation relevant for the researcher’s policy question. In such cases, the LATE
is not a relevant target parameter. Consider, for example, the large body of empirical research
that has examined the relationship between family size and observable child outcomes, such as
educational attainment. Black et al. (2005) use twin births and the sex composition of prior births
as instruments for family size. Their LATE estimates for these instruments suggest that family
size has a small effect on a child’s outcomes.

When interpreting the estimated LATEs, it is natural to consider whether variation in these
instruments can be used to address a counterfactual with interesting policy implications. An obvious
concern in doing so is that families that would only have another child due to a twin birth, or
due to the sex composition of their previous children, likely differ in unobservable ways from
other families. As a consequence, families whose fertility decisions would be affected by these
instruments may be dissimilar to families whose decisions would be affected by a proposed tax
or transfer policy. For evaluating such a policy, LATEs for either of these instruments are not
relevant target parameters. Arguing along these lines, Brinch et al. (2017) revisit the analysis of
Black et al. (2005) using an extrapolation approach discussed in Section 6. Their findings suggest
that there is a great deal of heterogeneity in the causal effect of family size on child outcomes. Their
results warrant caution in using LATEs for twin or sex composition instruments as parameters
for informing policy debates.

4.2. When There Is Sufficient Variation in the Instrument

Heckman & Vytlacil (1999, 2001c) show that, if the random variable P = p(X , Z) is continuously
distributed, conditional on X = x, then, under some regularity conditions, the MTE is point
identified for any ũ in the interior of its support. To see this, note that, in general, it can be shown
using Equation 4 and assumption 2 (Section 2.2) that

E
[
YD

∣∣∣ p(x, Z) = u, X = x
]

=
∫ u

0
m1(u′, x) du′,

E
[
Y (1 − D)

∣∣∣ p(x, Z) = u, X = x
]

=
∫ 1

u
m0(u′, x) du′. 16.

As a consequence, if the objects on the left-hand sides of Equation 16 can be differentiated at
u = ũ, then we obtain

∂

∂u
E

[
YD

∣∣∣ p(x, Z) = u, X = x
] ∣∣∣∣

u=ũ
= m1(̃u, x),

∂

∂u
E

[
Y (1 − D)

∣∣∣ p(x, Z) = u, X = x
] ∣∣∣∣

u=ũ
= −m0(̃u, x),

and thus
∂

∂u
E

[
Y

∣∣∣ p(x, Z) = u, X = x
] ∣∣∣∣

u=ũ
= m1(̃u, x) − m0(̃u, x), 17.

so that the MTRs and MTE at (̃u, x) are point identified. The third line of Equation 17 is what
Heckman & Vytlacil (1999, 2001c) refer to as the local IV estimand. A consequence of their
argument is that any target parameter is point identified if it has weights (ω�

0, ω�
1) that are nonzero

only for values of (̃u, x) for which ũ lies in the interior of the support of P , conditional on x. Viewed
in reverse, a given target parameter is point identified if the distribution of P , given X = x, is
continuous and exhibits sufficient variation to cover the support of (ω�

0, ω�
1) for every x.
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Unfortunately, this support condition severely limits the types of target parameters that are
point identified without additional assumptions. It requires a continuous instrument because,
if Z is discrete, then the distribution of P ≡ p(X , Z), conditional on X , will also be discrete,
so that differentiation in Equation 17 is not possible. Requiring an instrument to be continuous
already eliminates perhaps the majority of instruments used in modern applications of IV methods.
Moreover, even if the instrument is continuous, only target parameters with support contained
within the observed support of P (conditional on X ) can be nonparametrically point identified.
PRTEs for policies that involve extrapolating beyond the currently available support will not be
point identified without additional assumptions.12 In many cases, however, these are precisely the
types of policies that are likely to be relevant to decision makers.

For example, an important and largely unanswered question for developing countries is how
to design cost-effective policies that promote access to (and usage of ) preventive health products.
Mogstad et al. (2017) analyze this question using the Dupas (2014) data (on which our running
numerical illustration is styled) from a randomized controlled experiment in Kenya in which the
price for a new type of mosquito net was randomly assigned. They view different subsidy regimes
as different PRTEs and compare increases in usage to the cost of subsidization. For example,
they estimate the PRTE that compares a policy of free provision to a policy under which all
individuals are offered the product at a given price. To do so, they use the randomly assigned
prices as a (discrete) instrument for purchasing the health product. Many of the PRTEs that they
consider do not correspond to the variation in prices that were observed by the experiment. These
PRTEs are not point identified without additional assumptions, but as Mogstad et al. (2017)
show, informative bounds can still be constructed by using the methodology described in the next
section.

5. A GENERAL FRAMEWORK FOR INFERENCE ABOUT
CAUSAL EFFECTS

In the previous section, we discuss two cases in which the variation in the treatment that is induced
by the instrument can be used to point identify the target parameter without additional assump-
tions. In many other cases, answering the policy question of interest requires extrapolation from
the individuals whose treatment choice is affected by the available instrument to the individuals
whose treatment choice would be affected by the policy. In this section, we discuss how to use the
general framework proposed by Mogstad et al. (2017) to conduct this extrapolation.

5.1. What We Know: Instrumental Variables–Like Estimands

The starting point for Mogstad et al. (2017) is the observation that a rich class of identified
quantities can also be written in the same form (Equation 8) as the target parameter, β�. For
example, consider the IV estimand that results from using Z as an instrument for D in a linear
IV regression that includes a constant term but that does not include any other covariates X .
Assuming Cov(D, Z) �= 0, this estimand is given by

βIV ≡ Cov(Y, Z)
Cov(D, Z)

. 18.

12The marginal PRTE considered by Carneiro et al. (2010, 2011) provides a possible exception to this statement. This
parameter can be viewed as the PRTE that results from contrasting the status quo, (p , Z), to a marginal change to the status
quo. This marginal change is formally defined as an infinitesimally small change, so it is arguably not appropriate to view
these parameters as conjecturing a significant departure from existing policies.
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Heckman & Vytlacil (2005) show that βIV can be written as

βIV =
∫ 1

0
[m1(u, X ) − m0(u, X )] ωIV(u, X , Z) du, 19.

where ωIV is an identified weighting function. The similarity between Equation 19 and Equation 8
suggests that βIV carries some useful information about the possible values of β�.

Mogstad et al. (2017) show that, more generally, any cross moment of Y with a known or
identified function of (D, X , Z) can also be expressed as the weighted sum of the two MTR
functions, m0 and m1. To be more precise, let s be a known or identified measurable function
of (d , x, z), and define βs ≡ E[s(D, X , Z)Y ]. Mogstad et al. (2017) call the function s an IV-like
specification and call the quantity βs that s generates an IV-like estimand. Mogstad et al. (2017,
proposition 1) show that, for any s,

βs = E
[∫ 1

0
m0(u, X )ω0s (u, X , Z) du

]
+ E

[∫ 1

0
m1(u, X )ω1s (u, X , Z) du

]
,

where ω0s (u, x, z) ≡ s(0, x, z)1[u > p(x, z)]

and ω1s (u, x, z) ≡ s(1, x, z)1[u ≤ p(x, z)]. 20.

Intuitively, Equation 20 comes from writing βs = E[s(0, X , Z)Y0]+ E[s(1, X , Z)Y1] and then using
the selection equation (Equation 4) to express these quantities in terms of m0 and m1. Note that
the propensity score p(x, z) ≡ P [D = 1|X = x, Z = z] is an identified quantity that is the same
across different choices of s .

The weights in Equation 20 can be shown to nest the weighting expressions derived by
Heckman & Vytlacil (2005). For example, their weights for βIV can be generated by taking

s(d , x, z) = z − E[Z]
Cov(D, Z)

21.

and inserting this choice of s into the definitions in Equation 20. However, the expression in
Equation 20 applies more broadly to include any well-defined weighted linear IV estimand that
uses some function of (D, X , Z) as included and excluded instruments for a set of endogenous
variables also constructed from (D, X , Z).13 Deriving these weights is a matter of specifying the
appropriate IV-like specification, s. Table 3 lists the IV-like specifications that generate several
common IV-like estimands, such as the Wald estimand and the estimand corresponding to the
TSLS estimator.

5.2. From What We Know to What We Want

IV-like estimands are features of the observable data. In general, IV-like estimands are not equal
to the target parameter and thus are not themselves objects of interest. However, Equation 20
shows that any IV-like estimand is a weighted average of the underlying MTR functions. This
implies that only some MTR functions are consistent with a given value of an IV-like estimand.
Consequently, only some values of the target parameter, β�, are consistent with a given IV-like
estimand. In this section, we show how to utilize this intuition to construct bounds on β�.

Let S denote some collection of IV-like specifications s chosen by the researcher. Correspond-
ing to each s ∈ S is an IV-like estimand, βs ≡ E[s(D, X , Z)Y ]. We assume that the researcher
has restricted the pair of MTR functions m ≡ (m0, m1) to lie in some admissible set, M. The

13The phrases included instrument and excluded instrument are meant in the sense typically introduced in textbook treatments
of the linear IV model with constant treatment effects.
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Table 3 Common IV-like estimands

Estimand βs s(d, x, z) Notes

Wald (z0 to z1) E[Y |Z = z1]−E[Y |Z = z0]

E[D|Z = z1]−E[D|Z = z0]

1[z=z1]
P [Z=z1] −

1[z=z]
P [Z=z0]

E[D|Z = z1] − E[D|Z = z0]

P [Z = zj] �= 0, j = 0, 1 and
E[D|Z = z1] �=

E[D|Z = z0]

IV slope Cov(Y ,Z)

Cov(D,Z)

z− E[Z]

Cov(D,Z)
Z scalar

IV ( j th component) e ′
j E[Z̃X̃ ′]−1 E[Z̃Y ] e ′

j E[Z̃X̃ ′]−1̃z X̃ ≡ [1, D, X ′]′

Z̃ ≡ [1, Z, X ′]′

Z scalar
ej the j th unit vector

TSLS ( j th component) e ′
j
(
�E[Z̃X̃ ′]

)−1 (
�E[Z̃Y ]

)
e ′

j(�E[Z̃X̃ ′])−1�Z̃ � ≡ E[X̃ Z̃′]E[Z̃Z̃′]−1

Z vector

OLS slope Cov(Y ,D)

Var(D)

d − E[D]

Var(D)

OLS ( j th component) e ′
j E[X̃ X̃ ′]−1 E[X̃ Y ] e ′

j E[X̃ X̃ ′]−1 x̃ X̃ ≡ [1, D, X ′]′

ej the j th unit vector

Abbreviations: IV, instrumental variables; OLS, ordinary least squares; TSLS, two-stage least squares.

admissible set encodes the a priori assumptions that the researcher wishes to maintain about the
MTR functions, such as parametric or shape restrictions. Our goal is to characterize values of the
target parameter β� that could be generated by MTR functions that are elements of M and that
could also deliver the collection of identified IV estimands {βs : s ∈ S} through Equation 20.

To do this, it is helpful to view the weighted integrals for the target parameter (Equation 8)
and the IV-like estimands (Equation 20) as functions of m. Specifically, for the target parameter,
we define the function

	�(m) ≡ E
[∫ 1

0
m0(u, X )ω�

0(u, X , Z)du
]

+ E
[∫ 1

0
m1(u, X )ω�

1(u, X , Z)du
]

, 22.

and for any IV-like specification s, we define the function

	s (m) ≡ E
[∫ 1

0
m0(u, X )ω0s (u, X , Z) du

]
+ E

[∫ 1

0
m1(u, X )ω1s (u, X , Z) du

]
. 23.

Now, suppose that the data were generated according to Equations 1 and 4 under Assumptions 1–3
with MTR pair m ∈ M. Then, m must satisfy 	s (m) = βs for every s ∈ S. That is, m must lie in
the set

MS ≡ {
m ∈ M : 	s (m) = βs for all s ∈ S}

. 24.

This, in turn, implies that β� must belong to the set

B�
S ≡ {b ∈ R : b = 	�(m) for some m ∈ MS}. 25.

Intuitively, B�
S is the set of values for the target parameter that could have been generated by

MTR functions that are consistent with both the assumptions of the model and the values of the
IV-like estimands {βs : s ∈ S} that were observed in the data. Given knowledge of the distribution
of observables, B�

S could be determined by checking, for a candidate value b , whether there exists
an m ∈ M such that 	�(m) = b and 	s (m) = βs for all s ∈ S. If such an m exists, then we have
b ∈ B�

S ; otherwise, we have b /∈ B�
S . Under weak conditions on M, it is possible to show that B�

S
will be a closed interval, say, [β�, β

�
]. In this case, the process of characterizingB�

S can be simplified
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to the task of solving two optimization problems, namely

β� ≡ inf
m∈M

	�(m) subject to 	s (m) = βs for all s ∈ S
and β

� ≡ sup
m∈M

	�(m) subject to 	s (m) = βs for all s ∈ S. 26.

5.3. Computing the Bounds

Both 	� and 	s are linear functions of m. This endows the optimization problems (Equation 26)
with a great deal of structure that facilitates the speed and reliability of solving these problems.
However, two computational obstacles remain. First, the variables of optimization in Equation 26
are infinite dimensional. Second, Equation 26 could be difficult to solve unless the admissible set
M has enough structure.

Mogstad et al. (2017) solve both problems by replacing M with a finite dimensional linear
space. To see how this works, suppose that for every m ≡ (m0, m1) ∈ M, there exists a finite
dimensional vector θ ≡ (θ0, θ1) ∈ R

K0+K1 such that

md (u, x) =
Kd∑

k=0

θdkbdk(u, x) for d = 0, 1, 27.

where bdk(u, x) are known basis functions. Substituting Equation 27 into the definition of 	�(m),
we have

	�(m) =
∑

d∈{0,1}

Kd∑
k=0

θdk E
[∫ 1

0
bdk(u, X )ω�

d (u, X , Z) du
]

≡
∑

d∈{0,1}

Kd∑
k=0

θdkγ
�
dk, where γ �

dk ≡ E
[∫ 1

0
bdk(u, X )ω�

d (u, X , Z) du
]

. 28.

The γ �
dk terms in Equation 28 are identified population quantities that depend on the known basis

functions, bdk, and the known (or identified) weighting functions, ω�
d , but that do not depend on

θ . Imposing Equation 27 therefore turns the objective of Equation 26 into a linear function of the
finite dimensional parameter, θ . Similarly, Equation 27 implies that

	s (m) =
∑

d∈{0,1}

Kd∑
k=0

θdkγs dk, where γs dk ≡ E
[∫ 1

0
bdk(u, X )ωds (u, X , Z) du

]

for every s ∈ S, so that the constraints for the IV-like specifications in Equation 26 are also linear
in θ .

Under Equation 27, each m ∈ M is parameterized by a finite dimensional θ . In analogy to
M, one can specify an admissible set � to which θ is restricted to belong. For computation, it
is advantageous to specify � to be a closed convex polyhedron, i.e., a set determined by a finite
collection of linear inequalities. In this case, the maximization problem in Equation 26 reduces to
the linear program

β
� = max

θ∈�

∑
d∈{0,1}

Kd∑
k=0

γ �
dkθdk subject to

∑
d∈{0,1}

Kd∑
k=0

γs dkθdk = βs for all s ∈ S; 29.

a similar reduction is possible for the minimization problem. Linear programs like Equation 29
can be solved reliably and are routinely used in empirical work using quantile regressions (see, e.g.,
Abadie et al. 2002, Buchinsky 1994, Koenker 2005). We view the computational benefits afforded
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Bounds: [–0.494, –0.073]—shown at upper bound
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Figure 4
Fourth-degree polynomial bounds (K0 = K1 = 4) on the ATT. The left-hand vertical axis measures the weight functions for the target
parameter and IV-like estimands; the right-hand vertical axis measures MTR functions. (a) Weights and an MTR function for d = 0.
(b) Weights and an MTR function for d = 1. Abbreviations: ATT, average treatment on the treated; IV, instrumental variables; MTR,
marginal treatment response; TSLS, two-stage least squares.

by linear programming as sufficiently important to restrict ourselves to this case in the following
sections.

5.4. Parametric and Nonparametric Bounds

The interpretation of Equation 27 and � depends on the choice of basis functions. For example,
suppose for simplicity that there are no covariates X and that the basis functions are chosen to be
polynomials, i.e., bdk(u) = uk−1 for k = 1, . . . , Kd . With small values of Kd , this choice imposes a
strong parametric restriction on the collection of admissible MTR pairs. The restriction becomes
weaker for larger values of Kd , since larger values of Kd add more variables of optimization to
Equation 26. We view this as a natural and attractive property, since it allows a researcher to
transparently trade off the strength of their assumptions with the strength of their conclusions.

Figures 4 and 5 demonstrate this property in our running numerical illustration. Figure 4
is generated by solving the maximization problem (Equation 29) when the target parameter is
the ATT, the basis functions are fourth-degree polynomials (so K0 = K1 = 4), and two IV-like
estimands are included in S. The two IV-like estimands are the slope terms for the IV estimand
that uses Z as an instrument for D and a TSLS estimand that uses {1[Z = z]}4

z=1 as instruments
for D. In this example, these two IV-like estimands yield similar (although not identical) weights,
shown by the colored lines in Figure 4.

The black curves are examples of functions m0 and m1 that yield the upper bound on β�, which
we take to be the ATT. These choices are not unique. What is unique is the attained upper
bound of .049 for β�. This upper bound is constrained by the requirement that IV-like estimands
generated by this black curve are equal to the values observed in the data. Visually, this corresponds
to a requirement that the integrals of the products of the black and colored functions are equal
to the corresponding IV-like estimand, βs . The upper bound on the ATT is the largest that the
integral of the product of the black and gray dotted lines could be while still ensuring that this
requirement is satisfied for all s ∈ S.
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Figure 5
Ninth-degree polynomial bounds (K0 = K1 = 9) on the ATT. The left-hand vertical axis measures the weight functions for the target
parameter and IV-like estimands; the right-hand vertical axis measures MTR functions. The black curves represent choices of m0 and
m1 that yield the upper bound on β�, which we take to be the ATT. (a) Weights and an MTR function for d = 0. (b) Weights and an
MTR function for d = 1. Abbreviations: ATT, average treatment on the treated; IV, instrumental variables; MTR, marginal treatment
response; TSLS, two-stage least squares.

Figure 5 shows the result from the same problem with K0 = K1 = 9, so that the basis
functions are ninth-degree polynomials. The bounds necessarily become wider than in Figure 4,
which reflects the fact that the set of fourth-degree polynomials can be viewed as the subset of the
set of ninth-degree polynomials by setting the coefficients on the fifth and higher terms to zero.
Figure 6 demonstrates this phenomenon for a range of polynomial degrees K . The upper and
lower bounds for the current problem are shown as a solid green line with circle marks. Intuitively,
by increasing the degree of the polynomial, one is allowing for more wiggly MTR functions that
can adjust to become larger more quickly in regions where the target parameter weights are most
important.

For researchers who wish to remain fully nonparametric, Mogstad et al. (2017) show that
Equation 27 can also be used to recover exact nonparametric bounds by specifying the basis
functions as segments of a constant spline with knots chosen at particular u values.14 Figure 7
shows the impact of replacing the polynomial basis in Figures 4 and 5 with this constant spline
basis. The bounds widen—as they must—since they are computed under strictly fewer assumptions
than when a polynomial basis is maintained. Figure 6 shows that, as K increases, the bounds using
the polynomial basis approach the fully nonparametric bounds, depicted in Figure 6 as constant
dotted green lines with circle marks.

5.5. Nonparametric Shape Restrictions

One attractive aspect of the general framework is that it allows researchers to easily incorporate
nonparametric shape restrictions into their specification of the MTR functions. These restrictions

14Mogstad et al. (2017) also provide a statistical inference framework in which the dimension of θ grows asymptotically as in
sieve estimation (Chen 2007).
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Figure 6
Bounds on the ATT for different K with and without requiring the MTR functions to be decreasing. The
black dotted line indicates the value of the ATT in the data generating process. Abbreviation: ATT, average
treatment on the treated.

can be imposed either on the MTR functions m = (m0, m1) or directly on the MTE function
m1 −m0. For example, in some applications, one may be willing to assume that m1(·, x)−m0(·, x) is
weakly decreasing for every x. This restriction would reflect an assumption that those more likely
to select into treatment (those with small realizations of U ) are also more likely to have larger
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Figure 7
Exact nonparametric bounds on the ATT. Abbreviations: ATT, average treatment on the treated; IV, instrumental variables; MTR,
marginal treatment response; TSLS, two-stage least squares.
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Figure 8
Ninth-degree decreasing polynomial bounds on the ATT. Abbreviations: ATT, average treatment on the treated; IV, instrumental
variables; MTR, marginal treatment response; TSLS, two-stage least squares.

gains from treatment. This is similar to the monotone treatment selection assumption of Manski
& Pepper (2000).15

Figure 8 demonstrates the effect of imposing the assumption that the MTR functions are
decreasing in our running numerical example. In particular, the figure shows the result of using a
ninth-degree polynomial basis, as in Figure 5, but further restricting the admissible MTR pairs so
that both m0 and m1 must be decreasing in u, as in Figure 1. One justification for this assumption
would be a selection story in which individuals who are more likely to purchase mosquito nets
would also be more likely to be afflicted by malaria due to variation in their personal immunity
or home environment. The additional monotonicity restriction mechanically tightens the bounds
by imposing an additional constraint on the optimization problem (Equation 29). In particular,
it ensures that the maximizing MTR functions shown in Figure 5 are no longer feasible, since
neither is monotonically decreasing.

Figure 6 illustrates the impact of enforcing monotonicity for different-order polynomials.
Monotonicity can also be imposed when using the fully nonparametric (constant spline) bounds.
As expected, the polynomial monotone bounds are always narrower than the nonparametric mono-
tone bounds, with the difference disappearing as the degree of the polynomial increases. Figure 6
shows that shape restrictions such as monotonicity—which are inherently nonparametric—can
contain a great deal of identifying content. Indeed, the bounds for nonparametric but decreasing
MTRs are roughly the same as when allowing for MTRs that are nonmonotone sixth-degree
polynomials.

Another type of nonparametric shape restriction that is often used is separability between the
observed (X ) and unobserved (U ) components, i.e., the assumption that

md (u, x) = mU
d (u) + mX

d (x) for d = 0, 1, 30.

for some functions mU
d and mX

d . Separability implies that the slopes of the MTR functions with
respect to u do not vary with x. We discuss separability more fully in Section 6.2. Maintaining

15Chernozhukov et al. (2015) provide a discussion of various shape restrictions implied by economic theory in several empirical
applications.
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Figure 9
Ninth-degree decreasing polynomial bounds with more IV-like estimands. Abbreviations: ATT, average treatment on the treated;
IV, instrumental variables; MTR, marginal treatment response; OLS, ordinary least squares; TSLS, two-stage least squares.

combinations of assumptions simultaneously (e.g., both monotonicity and separability) is simply
a matter of imposing both restrictions at the same time.

In practice, these shape restrictions are imposed through the specification of θ for a given
finite basis (Equation 27). The restrictions involved in ensuring that a given θ generates an MTR
pair with a particular set of shape properties depends on the choice of basis. As discussed by
Mogstad et al. (2017), the Bernstein polynomial basis is particularly attractive in this regard, since
many common shape restrictions can be phrased as linear constraints on the components of θ .
For a nonparametric analysis, the constant spline basis discussed in the previous section is also
easy to force into particular shapes by imposing linear constraints on θ . The linearity involved
in these constraints is computationally helpful, since it ensures that Equation 26 remains a linear
program.

5.6. Choosing Instrumental Variables–Like Specifications

The set S of IV-like specifications is chosen by the researcher. Intuitively, one can think of S as
the set of information from the data that the analyst uses to discipline their inference. Examining
Equation 26 shows that including more specifications in S mechanically reduces the identified
set [β�, β

�
] for the target parameter, β�. For example, in Figure 9, we recompute the bounds in

Figure 8 after including two more IV-like estimands in S: the OLS estimand and the Z = 2 to
Z = 4 Wald estimand. This results in a substantial decrease in the width of the bounds. Mogstad
et al. (2017) show how to choose S systematically so as to exhaust all of the information contained
in the conditional mean of Y for any given choice of the admissible set M.

For the purposes of identification, the only drawback to expandingS is increased computational
difficulty. When considering statistical inference, the situation becomes more delicate, as including
IV-like specifications with low content and high noise will be unhelpful. A natural starting point is
to choose IV-like specifications that generate the estimands that one would ordinarily be interested
in when not concerned about endogeneity or unobserved heterogeneity. For example, one set of
S would be the vector of OLS estimands, another would be the vector of IV estimands, and a third
would be a vector of TSLS estimands from including an additional instrument.
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Figure 10
Bounds on LATE+

2→3(α) under different IV-like estimands. Abbreviation: LATE, local average treatment
effect.

While this potentially leaves some information on the table, it has the interpretative benefit
of being a departure from a well-understood baseline. An attractive property of this approach is
that, by construction, any feasible value of the target parameter must also be consistent with these
baseline IV-like estimands. This allows one to follow the advice of Imbens (2010, pp. 414–15), who
recommends reporting both a standard LATE and parameters with higher external validity while
maintaining a clear distinction between the assumptions that drive their identification. As long as
one includes a Wald estimand corresponding to such a LATE in the set of IV-like specifications,
all MTR pairs in MS and all potential values of the target parameter, B�

S , will necessarily be
consistent with this LATE.16

5.7. Determinants of the Width of the Bounds

The width of the bounds is determined by three factors: the degree of extrapolation required
to evaluate the target parameter, the strength of the a priori assumptions that the analyst main-
tains, and the information set of IV-like estimands S. The trade-off among these factors can be
demonstrated by considering bounds on the right-hand extrapolated Z = 2 to Z = 3 LATE,
i.e., LATE+

2→3(α), which is plotted in Figure 3. Figure 10 shows these bounds as a function of
α for three information sets (specifications of S) under the assumption that the MTR functions
are decreasing ninth-order polynomials. The first information set is the one used in Figure 8,
while the second information set is the one from Figure 9, which includes two additional IV-like
estimands. The sharp information set represents the best possible bounds that can be achieved
using a formulation that is discussed by Mogstad et al. (2017).

16Kline & Walters (2017) note that some fully parametric models for binary treatments also happen to possess this property
in certain settings. In contrast, our approach imposes this property.
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Figure 11
Sharp bounds on LATE+

2→3(α) under different assumptions. Abbreviation: LATE, local average treatment
effect.

As expected, the bounds are nested for any given value of α. For α = 0, only the second and
sharp information sets yield point identification of LATE+

2→3(0), which is just equal to the usual
Z = 2 to Z = 3 LATE. This is simply because the first information set does not include either the
Z = 2 to Z = 3 Wald estimand or a combination of other IV-like estimands that could generate
this Wald estimand. Similarly, at α = p(4) − p(3) = 0.3, the right-hand extrapolated Z = 2 to
Z = 3 LATE is equal to the usual Z = 2 to Z = 4 LATE. Consequently, the bounds for the
second and sharp information sets collapse to a point, reflecting the fact that this parameter is
point identified. For other values of α, the second and sharp information set bounds are narrow
but not a point. Values of α that are farther away from 0 or 0.3 correspond to extrapolated LATEs
that require more significant extrapolations (or interpolations) away from the instrument variation
observed in the data. The intuition that these parameters should be more difficult to identify is
visible in the bounds in Figure 10.

In Figure 11, we maintain the sharp information set from Figure 10 and consider a nested
set of assumptions on the MTR functions. For any given α, weaker assumptions naturally lead
to wider bounds. For α = 0 and α = 0.3, even the nonmonotone nonparametric bounds yield
point identification, again as a consequence of the results of Imbens & Angrist (1994). Figure 11
reveals that an analyst must acknowledge a compromise between the extent to which they wish
to extrapolate (α) and the strength of the assumptions that they impose. There is no free lunch.
Given a desired tightness of the bounds, a more ambitious extrapolation can be obtained only by
imposing stronger assumptions. Given a set of assumptions, tighter bounds can be obtained only
by less ambitious extrapolations. The utility of the general framework is that it gives the researcher
the tools to decide exactly where they want to locate on this frontier between internal and external
validity. It is unlikely that the researcher’s optimal location is the corner solution of reporting only
parameters that are nonparametrically point identified, such as the LATE.
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Table 4 Weights for measures of selection

Weights

Quantity Expression ω�
0(u, x, z) ω�

1(u, x, z)
Average selection bias E[Y0|D = 1] − E[Y0|D = 0] 1[u ≤ p(x,z)]

P [D = 1]
− 1[u > p(x,z)]

P [D = 0]
0

Average selection on the level E[Y1|D = 1] − E[Y1|D = 0] 0 1[u ≤ p(x,z)]

P [D = 1]
− 1[u > p(x,z)]

P [D = 0]

Average selection on the gain E[Y1 − Y0|D = 1] − E[Y1 − Y0|D = 0] −ω�
1(u, x, z) 1[u≤p(x,z)]

P [D=1]
− 1[u>p(x,z)]

P [D=0]

5.8. Testable Implications

It is possible that no solution exists to the programs in Equation 26 because the feasible set (MS ) is
empty. This indicates that the model is misspecified: There does not exist a pair of MTR functions
m that can satisfy the researcher’s assumptions (m ∈ M) while also generating the observed data
[	s (m) = βs for all s ∈ S]. This can happen even if M is unrestricted, since the choice equation
(Equation 4) with Assumptions 1–3 is known to have testable implications (Balke & Pearl 1997,
Imbens & Rubin 1997, Kitagawa 2015). However, if M is restricted, then misspecification could
also be due to falsification of these additional restrictions on the MTR functions.

This observation can be used to test a variety of interesting hypotheses. For example, suppose
that M is restricted to contain only MTR pairs with m0 components consistent with E[Y0|D =
1] = E[Y0|D = 0]. This can be interpreted as the set of all MTR pairs that lead to no average
selection bias. Table 4 shows that this restriction can be imposed as a linear constraint by defining

	sel(m) ≡ E
[∫ 1

0
m0(u, X )

(
1[u ≤ p(X , Z)]

P [D = 1]
− 1[u > p(X , Z)]

P [D = 0]

)
du

]
31.

and then constraining M to satisfy 	sel(m) = 0. As long as no other assumptions in the model are
deemed suspect, finding that the feasible set in Equation 26 is empty when M is constrained in
this way can be interpreted as evidence against the hypothesis that the treatment is exogenous.
One could further restrict M to only contain m such that 	gain(m) = 0, where 	gain(m) is defined
as in Equation 31 using the weights for average selection on the gain given in Table 4. Finding
the feasible set in Equation 26 to be empty with both 	sel(m) = 0 and 	gain(m) = 0 is evidence
against the hypothesis of no unobserved heterogeneity.

6. OTHER APPROACHES TO EXTRAPOLATION

In this section, we compare the general Mogstad et al. (2017) framework discussed in Section 5
to several other approaches that have been used in the literature. We show that many of these
approaches can be viewed as special cases of the general framework in which the set of admissible
MTR functions, M, is restricted to only contain functions with certain functional forms.

6.1. Independence, Constant Effects, and Random Choices

The primary motivation for using an IV method is the concern that D and (Y0, Y1) are dependent.
In the notation of the choice model, this dependence arises from dependence between U and
(Y0, Y1) that remains even after conditioning on X . If Y0 and Y1 were independent of U , conditional
on X , then the MTR functions would be constant in u, i.e., md (u, x) = md (x) for d = 0, 1. In this
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case, m0 and m1 could be directly recovered from the conditional means of Y, since

E[Y |D = 1, X = x] = E [m1(U , x)|D = 1, X = x] = m1(x),

and similarly for m0. Any target parameter is then point identified. Indeed, most target parameters
we have considered will be identical, since the potential outcomes do not vary systematically with
the unobservable factors that are related to treatment status.17 This independence condition is
useful to keep in mind as an extreme case. However, it is unattractive as an assumption, since it
assumes away the identification problem that originally motivated considering an IV strategy.

A slightly weaker alternative to independence is to assume that the MTE function m1(u, x) −
m0(u, x) is constant in u. While this assumption allows for selection bias, in the sense that m0 and
m1 can still themselves be functions of u, it implies no selection on the unobserved gains from
treatment. In other words, while Y0 is still allowed to depend on D, the treatment effect Y1 − Y0

is assumed to be independent of D, conditional on X . Under this condition, the z0 to z1 Wald
estimand (conditional on X = x) point identifies MTE(u, x) = MTE(x) for all u, i.e.,

E[Y |Z = z1, X = x] − E[Y |Z = z0, X = x]
E[D|Z = z1, X = x] − E[D|Z = z0, X = x]

=
∫ p(x,z1)

p(x,z0) [m1(u, x) − m0(u, x)]du

p(x, z1) − p(x, z0)
=

∫ p(x,z1)
p(x,z0) MTE(x) du

p(x, z1) − p(x, z0)
= MTE(x).

As a result, any target parameter that depends only on the MTE—but not on the MTRs per
se—is point identified. This includes any target parameter with symmetric weights (i.e., ω�

0 =
−ω�

1), such as the ATE, ATT, ATU, and any counterfactual LATE. The intuition behind this is
straightforward. If the average causal effect does not vary with unobservables, then it is sufficient
to identify this effect for a single subgroup, such as the complier group picked up by the z0 to z1

Wald estimand.18

As Heckman & Vytlacil (2007a,b) argue, justifying an MTE function that is constant in u
requires strong economic assumptions. In particular, it requires one to assume either that the
causal effect of D on Y is identical for all individuals with X = x, or to assume that these individuals
either do not know or do not act on their idiosyncratic differences in this causal effect. Consider
the implications in our running example of the impact of a mosquito net on contracting malaria.
The assumption that the causal effect of the mosquito net does not vary with unobservables is
clearly a strong one, since it rules out heterogeneity in susceptibility and sleeping environments,
which are known to be important. Given this, the MTE function will be constant in u only if
individuals do not base their purchase decisions on these heterogeneous factors. The salience of
mosquitos and malaria makes this assumption difficult to justify.

A dissenting opinion on the viability of assuming away unobserved heterogeneity in treatment
effects is provided by Angrist & Fernández-Val (2013, p. 411), who argue that a version of this
assumption, which they describe as “conditional effect ignorability,” can be attractive.19 We are
not sympathetic to this view. Indeed, allowing for unobserved heterogeneity in the effect of D on

17These observations date back at least to Heckman & Robb (1985a,b). Angrist (2004) provides a modern revision.
18Using similar intuition, Angrist (2004) shows that, if the observed propensity score is symmetric around .5, then symmetry
assumptions on (Y0, Y1, U ) are sufficient to point identify the ATE. However, even if the propensity score is fortuitously
symmetric in this way, it is not clear how one could motivate the symmetry assumption on unobservables without appealing
to one of the explicitly parametric approaches discussed in Section 6.3.

19The assumption used by Angrist & Fernández-Val (2013) is that
∫ p(x,z1)

p(x,z0) [m1(u,x) − m0(u,x)] du

p(x,z1) − p(x,z0) = ∫ 1
0 [m1(u, x) − m0(u, x)] du

for all x and z. While this is mathematically weaker than assuming that m1(u, x) − m0(u, x) is constant in u, it is difficult to
see how one could justify this equation without making the stronger assumption.
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Y is a key motivation in the modern program evaluation literature and one that is supported by a
large body of empirical work. Assuming it away also disposes of key conceptual distinctions, such
as the difference between the LATE and the ATE discussed by Imbens & Angrist (1994).

6.2. Separability of Observed and Unobserved Heterogeneity

In Section 4.2, we see that a key obstacle to nonparametric point identification is a lack of sufficient
instrument variation. One way to ameliorate this problem is to exploit variation in the propensity
score that arises from the covariates, X . Carneiro et al. (2011) show how to do this by first writing

Yd = μd (X ) + Vd for d = 0, 1, 32.

where μd (x) ≡ E[Yd |X = x] and E[Vd |X ] = 0. This by itself is not an assumption, since it is
satisfied by letting Vd = Yd −μd (X ). However, Carneiro et al. (2011) then strengthen assumption 2
(see Section 2.2) to the assumption that (V0, V1, U ) ⊥⊥ (X , Z). Under this stronger independence
assumption, we can write

md (u, x) ≡ E[Yd |U = u, X = x] = μd (x) + E[Vd |U = u] for d = 0, 1, 33.

which is an additively separable function of x and u. Returning to Equation 17, this implies that

∂

∂u
E[Y D|p(x, Z) = u, X = x]

∣∣∣∣
u=ũ

= μ1(x) + E[V1|U = ũ], 34.

and similarly for d = 0.
Equation 34 shows that, under additive separability, variation in P = p(X , Z) conditional on

X = x can be used to trace out the same function E[Vd |U = u], regardless of the value of x.
By parameterizing μd (x), this property can be exploited to point identify the MTR functions for
every (u, x) with u on the interior of the unconditional support of P , using a modification of the
idea behind Robinson’s (1988) partially linear estimator.20 In contrast, without separability, the
MTR functions are only point identified on the interior of the support of P , conditional on X = x,
which is necessarily smaller. Continuous variation in the propensity score is still needed under
separability. However, the continuity is for the unconditional distribution of P , so it could, in
principle, come from a continuous component of X , even if Z is discrete.

A growing empirical literature has started using this type of separability approach to circumvent
limitations in instrument variation (see, e.g., Brinch et al. 2017; Carneiro & Lee 2009; Carneiro
et al. 2011, 2016; Cornelissen et al. 2018; Eisenhauer et al. 2015; Kline & Walters 2016; Maestas
et al. 2013). It is important to notice that assuming (V0, V1, U ) ⊥⊥ (X , Z) does not imply that Y0

or Y1 are independent of X . Rather, the dependence of Y0 and Y1 on X is captured through the
conditional mean function μd (X ), which is often specified as linear in parameters in applications.
Still, the stronger independence assumption implies, among other things, that X and U are inde-
pendent. This nearly elevates X to the status of an instrument, albeit one that does not need to
obey the usual exclusion restriction. In applications, the types of variables usually included in X ,
such as sociodemographic controls, are unlikely to be exogenous in this way.

20For example, suppose that μ1(x) = x′τ1 is linear in parameters. Then, from Equation 16, one has E
[
ỸD|P , X

] = P X̃ ′τ1,
where ỸD ≡ YD − E[Y D|P ], X̃ ≡ X − E[X |P ] and P ≡ p(X , Z), as usual. Given sufficient variation in P X̃ , this enables
one to point identify τ1, and therefore μ1(x), for any x. Treating τ1 as known, it follows that E

[
YD − PX ′τ1|P = u

] =∫ u
0 E[V1|U = u′] du′, so that E[V1|U = u] is point identified for any u in the interior of the support of P by differentiating

the left-hand side. It follows from Equation 33 that m1(u, x) = μ1(x) + E[V1|U = u] is point identified for any x and any u
in the interior of the unconditional support of P (for more details on this argument, see Carneiro et al. 2011).
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Brinch et al. (2017) observe that the stronger independence assumption is not actually nec-
essary for the purpose of expanding the effective support of the propensity score. Instead, the
separability in Equation 33 can be achieved by writing Equation 32 and adding the assumption
that E[Vd |U , X ] = E[Vd |U ] to assumption 2 (Section 2.2). This assumption still allows for X and
U to be dependent in arbitrary ways, thereby addressing the previous concerns while still allowing
the researcher to exploit the separability assumption. In Section 5.5, we show that separability
can be imposed in the general Mogstad et al. (2017) framework by directly restricting the set of
admissible MTR functions.

In some settings, the separability in Equation 33 can be motivated by economic theory through
standard classes of technologies or preferences. For example, suppose that md is a production
function in state d , with Yd denoting output and X denoting observed input factors. Additive
separability in md is then implied by perfect substitutability between X and unobserved input
factors. Alternatively, if input and output factors are measured in logs, then additive separability
is implied by unit elasticity between observable and unobservable inputs, as in a Cobb-Douglas
production function. More generally, additive separability in md is compatible with a production
technology in which unobserved productivity differences across individuals are factor neutral,
which is a standard assumption for methods of estimating production functions.

6.3. Parametric Assumptions

Another natural response to the problem of limited instrument variation is to impose parametric
structure. Using parametric assumptions to correct for unobserved heterogeneity has a long his-
tory, dating back to Gronau (1974) and Heckman (1974, 1976, 1979). Heckman et al. (2001, 2003)
apply this approach to the binary treatment setting considered in this review. The case that they
study, which is the most widely used, maintains Equation 32 and the assumption that (Vd , �−1(U ))
is bivariate normal and independent of X for d = 0, 1, where �−1 is the inverse of the standard
normal cumulative distribution function (CDF).21

Under this assumption, Equation 33 reduces to

md (u, x) = μd (x) + Corr(Vd , U )Var(Vd )�−1(u) for d = 0, 1 35.

because the conditional mean function for bivariate normal random variables is linear in the
conditioning value. Assuming that there is at least one value x for which p(x, Z) has two support
points, say, p(x, z1) ≡ ũ1 > ũ0 ≡ p(x, z0), it follows from Equation 16 that

E[Y D|p(x, Z) = ũ1, X = x] − E[Y D|p(x, Z) = ũ0, X = x]

= Corr(V1, U )Var(V1)
∫ ũ1

ũ0

�−1(u) du, 36.

and similarly for d = 0. This implies that the product Corr(Vd , U )Var(Vd ) is identified for d = 0, 1,
and thus, that the functional form restriction in Equation 35 is sufficient to point identify the
MTR functions everywhere, at least as long as there is enough variation in X to identify the μd

components.
This identification argument hinges heavily on the assumption of bivariate normality, which

ensures that E[Vd |U = u] is a function that is completely determined by the single unknown
quantity, Corr(Vd , U )Var(Vd ). Two points of exogenous variation, i.e., z0 and z1, are sufficient to

21Alternatively, and equivalently, the same assumption can be made about (Vd , U ) using the prenormalized choice equation
(Equation 2).

www.annualreviews.org • Identification and Extrapolation of Causal Effects 605

A
nn

u.
 R

ev
. E

co
n.

 2
01

8.
10

:5
77

-6
13

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

O
xf

or
d 

- 
B

od
le

ia
n 

L
ib

ra
ry

 o
n 

08
/1

0/
22

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



EC10CH21_Mogstad ARI 29 June 2018 13:58

identify this quantity. Once it is known, the functional form of the normal distribution is used to
extrapolate to any other value required to evaluate a given target parameter. This argument should
be concerning whenever normality of an unobserved variable lacks an economic motivation. In
our view, it is an exceptional case when one actually can motivate normality as anything other
than a convenient functional form assumption.

Moreover, normality in particular has some unattractive economic implications. As Carneiro
et al. (2011, p. 2767) note, normality implies that the limit as u tends to 0 or 1 of the MTR functions
(Equation 35) is necessarily ±∞, since limu→0 �−1(u) = −∞ and limu→1 �−1(u) = +∞. That is,
the normal model implies that individuals unlikely to take treatment and those very likely to take
treatment experience arbitrarily high or low causal effects of the treatment. In most settings, this
is implausible on its face.

A more subtle property of normality is that it requires the MTE function to be monotone
decreasing or increasing as a function of u, i.e., it imposes one direction of the monotone treatment
selection condition discussed in Section 5.5. While potentially appealing in some situations, some
authors have found settings in which this assumption does not appear to hold. For example, Brinch
et al. (2017) find evidence of a U-shaped MTE function for the causal effect of having an additional
child on the educational outcomes of older children when using sex composition as an instrument.
One attraction of the framework discussed in Section 5 is that it allows one to decouple parametric
shape restrictions from fundamentally nonparametric restrictions such as monotonicity.

There are other parametric approaches that yield the same payoff as normality but that do
not share all of these negative features and that can arguably be easier to interpret. For example,
suppose that, instead of using Equation 35, we assume that md (u, x) is linear as a function of u for
every x, i.e.,

md (x, u) = μd (x) + λd (x)u for d = 0, 1, 37.

where both μd and λd are unknown functions of x. From Equation 16, we have

E[Y D|p(x, Z) = u, X = x] = uμ1(x) + 1
2

u2λ1(x),

with a similar expression holding for d = 0. Since we have P [D = 1|p(x, Z) = u, X = x] = u by
definition of the propensity score, it follows that

E[Y |D = 1, p(x, Z) = u, X = x] = μ1(x) + 1
2

uλ1(x). 38.

Using Equation 38 with two values ũ1 ≡ p(x, z1) �= p(x, z0) = ũ0 and X = x fixed shows that
both μ1(x) and λ1(x) are point identified. The same argument could be repeated for any other x
for which the distribution of p(x, Z)|X = x has two support points. Alternatively, if separability
is imposed [i.e., λd (x) = 1], then this propensity score variation is needed conditional on only a
single value of x, as in Equation 36.

This linearity assumption was first suggested by Brinch et al. (2012).22 The assumption yields
point identification through effectively the same extrapolation argument as bivariate normality.
Linearity has a straightforward interpretation: Holding X = x fixed, a 1-percentage-point change
in the unobserved willingness to pay for treatment u results in an average increase in Yd of λd (x).
In contrast, under normality, a one-unit increase in u results in a different average increase in Yd

depending on the base value of u, where the form of this difference is dictated by the shape of
the inverse normal CDF. Since the two assumptions are not nested, their implications must be

22Kowalski (2016) provides a more recent application of the same idea.
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considered on a case-by-case basis.23 However, at least in some applications, the comparative ease
of interpreting linearity should make it easier to motivate.

Another benefit of considering a functional form restriction like linearity is that it is straightfor-
ward to relax the restriction. As discussed by Brinch et al. (2012, 2017), whereas a linear MTR can
be point identified with a binary instrument, point identifying a quadratic MTR requires a ternary
instrument, a cubic MTR requires a quaternary instrument, etc.24 However, the notion that the
richness of the data should constrain the assumptions of the model is, in our view, backward. The
assumptions of the model should be considered on their own; if the data are insufficiently rich to
point identify the desired model, then this must be recognized.

The general framework in Section 5 provides a disciplined solution to this criticism, since
it allows researchers to maintain parametric restrictions without requiring point identification.
Point identification is still allowed as a special case, however. In particular, notice that the set
MS in Equation 24 is a system of |S| linear equations, with the number of variables given by the
combined dimensions of m ≡ (m0, m1). The assumption that S can be specified to include enough
nonredundant IV-like estimands to exactly pin down a single m ∈ M is a generalization to the
arguments in Equations 36 and 38. As always, whether such a specification is possible depends on
both the richness of the data, i.e., how many distinct IV-like estimands can be found, and how
flexibly the researcher wishes to specify M.

6.4. Rank Invariance

Rank invariance is an assumption about unobserved heterogeneity that was introduced to the
program evaluation literature by Heckman et al. (1997). The formal assumption is that F0|x(Y0) =
F1|x(Y1) (almost surely), where F0|x and F1|x denote the marginal distributions of Y0 and Y1,
conditional on X = x. In words, F0|x(Y0) ∈ [0, 1] can be viewed as an individual’s rank (order)
in the distribution of Y0|X = x, and rank invariance postulates that this order remains the same
in the D = 1 counterfactual outcome distribution. While rank invariance allows Y0 and Y1 to be
dependent with D, conditional on X , it has the unusual implication that the joint conditional-on-X
distribution of Y1 and Y0 is degenerate, since it implies that Y1 is a deterministic function of Y0

and X .25

Chernozhukov & Hansen (2005) show that rank invariance can be used to point identify the
ATE under a somewhat nonstandard relevance condition for the relationship between D and Z.
Their model does not impose the choice equation (Equation 4). Vuong & Xu (2017) show that also
imposing Equation 4 allows one to obtain point identification of conventional parameters, such
as the ATE and ATT, under the usual relevance condition used to ensure the existence of Wald

23It should also be noted that bivariate normality imposes a restriction on the entire distributions of (Y0, U ) and (Y1, U ),
while the linearity assumption (Equation 37) is a restriction only on the means, i.e., the MTR functions. That is, bivariate
normality leads to a fully parametric model, whereas under Equation 37, the model is still semiparametric. This engenders
several differences for identification of other features of the distribution of Y0 and Y1, as well as for the efficiency of statistical
inference. A more direct comparison would be between Equation 35 and Equation 37 as different restrictions on the forms of
the MTR functions.
24These observations are related to proposed series estimators of the local IV estimand (Equation 17), as in the work of Moffitt
(2008) and French & Song (2014). Brinch et al. (2012, 2017) show that more flexible specifications of the MTE functions can
be point identified by first point identifying the MTR functions separately, as in Equation 38.
25Assuming rank invariance in this way only makes sense in settings where Y is continuously distributed. Rank invariance can
be interpreted as a restriction on the dimension of unobserved heterogeneity. In this sense, it is intuitively similar to models
for discrete outcomes with a threshold-crossing form, as considered, for example, by Vytlacil & Yildiz (2007), Chesher (2010),
Shaikh & Vytlacil (2011), Bhattacharya et al. (2012), Machado et al. (2013), Mourifié (2015), and Torgovitsky (2017b).
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estimands. Their argument works by identifying the relationship (mapping) between Y0 and Y1

among the compliers, i.e., those individuals whose choices would be affected by a given shift in the
instrument. Under rank invariance, one can then infer the distribution of Y0 for the subpopulation
that would always choose D = 1 by applying this mapping to their observed Y = Y1 outcomes.
Similarly, one can infer the distribution of Y1 for individuals who would always choose D = 0.
This strategy effectively uses the rank invariance assumption to extrapolate from individuals whose
treatment choices are affected by the instrument to those whose choices are not.

6.5. Analytical Bounds

The approach in Section 5 is influenced by an important line of work due primarily to Manski
(1989, 1990, 1994, 1997, 2003) and Manski & Pepper (2000, 2009).26 Unlike Manski’s work on
IV methods, the Mogstad et al. (2017) approach maintains the choice Equation 4.27 Maintain-
ing some form of choice model (not necessarily Equation 4) is indispensable for evaluating the
effects of policy interventions that do not mandate treatment or nontreatment.28 As we argue in
Section 3, we view such policies as being typical of interesting counterfactual questions in economic
applications.

Another way in which the Mogstad et al. (2017) framework departs from Manski’s work is more
practical. Instead of deriving explicit expressions for bounds, the Mogstad et al. (2017) framework
provides a computational characterization of bounds. The benefit of the computational approach is
flexibility: The same procedure can be used for a large class of target parameters under a wide range
of assumptions without requiring new analytical derivations. Such derivations can be extremely
challenging for models that maintain multiple assumptions. The cost of a computational approach
is that, without analytical expressions for the bounds, it is difficult to understand specific details
of their structure. Our view is that the benefits of the computational approach outweigh this cost
in many settings.

As an example of this benefit, recall Figures 5 and 7 of our numerical illustration. For
Figure 7, we specify the MTR functions to be constant splines in a way that exactly repli-
cates the nonparametric bounds. With some effort, one could derive the analytical bounds for
this case. In contrast, for Figure 5, we specify the MTR functions as ninth-degree polynomials.
This narrows the bounds considerably by ruling out the discontinuous MTR functions that are
permitted in Figure 7. We view this as attractive for many applications, since these discontin-
uous functions are unlikely to represent important cases to guard against in typical economic
settings. However, analytic expressions for the bounds under a ninth-degree polynomial are un-
known and seem difficult to derive. Using Mogstad et al.’s (2017) computational approach, this
derivation is not necessary, and the bounds are returned almost instantaneously using standard
software.

26Tamer (2010) provides an historical perspective on this literature.
27Incidentally, the Imbens & Angrist (1994) monotonicity assumption underlying the choice equation (Equation 4) is exactly
Manski’s (1997) monotone treatment response assumption, but applied to the counterfactual relationship between Z and D
rather than that between D and Y .
28An interesting result due to Heckman & Vytlacil (2001b) shows that, when the implications of the choice model (Equation 4)
are not rejected (see Section 5.8), the choice model has no impact on the sharp nonparametric bounds for the ATE derived
by Manski (1994). Balke & Pearl (1997) and Kitagawa (2009) find related results. This result extends to the ATT and the
ATU but clearly not to parameters, such as PRTEs, that are defined only given a choice equation. Similarly, the result also
loses meaning when placing assumptions on the MTR functions that have no clear interpretation in the absence of a choice
equation.
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7. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

Above, we discuss the implications of unobserved heterogeneity in treatment effects for using IV
methods to answer specific well-defined policy questions. The identification challenge inherent in
doing this can be viewed as a problem of extrapolating from the individuals whose treatment choices
are affected by the variation in the data to the individuals relevant for the counterfactual question.
Several methods for formally conducting this extrapolation have been proposed in the literature.
We review these approaches and argue that their reliance on point identification is a weakness. We
discuss a general framework, developed fully by Mogstad et al. (2017), that nests these approaches
but allows for more flexibility by recognizing the possibility of partial identification.

Partial identification approaches are sometimes criticized for yielding empirical conclusions
that are insufficiently informative for practitioners (e.g., Imbens 2013, pp. F407–9). We view
computational methods, such as the one discussed in Section 2, as important tools for answering
this criticism. The flexibility of the Mogstad et al. (2017) method means that a researcher can
smoothly adjust their policy question (target parameter), or the assumptions that they are willing
to maintain, in a way that approaches point identification as a special case. As a result, the tightness
of the bounds that the researchers report is at their discretion, while still being disciplined by the
reality that stronger conclusions require stronger assumptions. We view this as an important im-
provement over the current practice—common in applied work—of hoping that a given estimand
is relevant for the policy change of interest to the researcher. This type of faith-based extrapolation
is ad hoc and potentially misleading.29

There are many avenues down which Mogstad et al.’s (2017) approach to identification and
extrapolation of treatment effects can be further developed. While we focus on the widely studied
case of a binary treatment, applying similar ideas to models with continuous or discrete (ordered
or unordered) treatments would be useful and involves many complications.30 The issue of policy
relevance and the corresponding need for extrapolation that arises in IV models are also a concern
in other common program evaluation strategies. For example, it may be interesting to apply ideas
similar to those discussed in this review to help ameliorate the local nature of regression discon-
tinuity designs.31 Similar ideas could potentially also be applied to more complicated evaluation
settings involving dynamics, mediation, peer effects, or other challenges for identification.
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