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Summary This paper studies identification of potential outcome distributions when treatment
response may have social interactions. Defining a person’s treatment response to be a function
of the entire vector of treatments received by the population, I study identification when non-
parametric shape restrictions and distributional assumptions are placed on response functions.
An early key result is that the traditional assumption of individualistic treatment response is
a polar case within the broad class of constant treatment response (CTR) assumptions, the
other pole being unrestricted interactions. Important non-polar cases are interactions within
reference groups and anonymous interactions. I first study identification under Assumption
CTR alone. I then strengthen this Assumption to semi-monotone response. I next discuss
derivation of these assumptions from models of endogenous interactions. Finally, I combine
Assumption CTR with statistical independence of potential outcomes from realized effective
treatments. The findings both extend and delimit the classical analysis of randomized
experiments.

Keywords: Analysis of treatment response, Partial identification, social networks.

1. INTRODUCTION

This paper studies identification of treatment response in settings with social interactions, where
personal outcomes may vary with the treatment of others. Social interactions are common
within households, schools, workplaces and communities. Yet research on treatment response
has mainly assumed that a person’s outcome may vary only with his own treatment, not with
those of other members of the population. Cox (1958) called this ‘no interference between
units’. Rubin (1978) called it the Stable Unit Treatment Value Assumption. I call it individualistic
treatment response (ITR), to mark it as an assumption that restricts the form of treatment response
functions.

The present analysis extends my earlier work on identification with individualistic response,
reported in Manski (1990, 1997, 2003), Manski and Pepper (2000, 2009), and elsewhere. Here, as
there, I ask what can be learned about outcomes under potential treatments when data on realized
treatments and outcomes are combined with assumptions on treatment response. I emphasize
relatively weak assumptions that may be credible in applications and, hence, primarily report
findings of partial rather than point identification.

The concerns of this paper differ from those of previous research on identification of social
interactions. Econometrics has long studied identification of structural models of endogenous
interactions, which suppose that individual outcomes vary with the outcomes of other members
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S2 C. F. Manski

of the population. Research on this subject began with classical analysis of linear simultaneous
equations and has evolved through the recent literature on identification of linear-in-means
models (Manski, 1993) and discrete choice models (Tamer, 2003, and Brock and Durlauf, 2007).
See Blume et al. (2011) for a review of much of the modern literature. From the perspective
of models of endogeneous interactions, treatment response is the reduced-form solution to a
structural system. Section 4 of the present paper elaborates on this matter.

1.1. Basic concepts and notation

To set the stage, I now specify basic concepts and notation that will be used throughout the
paper. This requires a modest but essential extension of the setup used in my earlier work on
identification of treatment response. A clear and concise formal language is essential to the
analysis.

When response is assumed to be individualistic, each member j of population J has a response
function yj(·): T → Y mapping the mutually exclusive and exhaustive potential treatments t ∈ T
into outcomes yj(t) ∈ Y . Person j has an observable realized treatment zj ∈ T and realized outcome
yj ≡ yj(z). Suppose that the cardinality of T is at most countable. This enables analysis that uses
only elementary probability theory.

Let J be a probability space (J, �, P). Then observation of (yj, zj; j ∈ J) reveals P(y, z), the
joint distribution of realized outcomes and treatments. A common research objective has been
to learn about the outcome distribution P[y(t)] that would occur if all persons were to receive
a specified treatment t. Interest in P[y(t)] is often motivated by a decision problem in which a
planner chooses between the realized treatments and a policy that mandates treatment t. Then the
planner wants to compare P[y(t)] with P(y).

Now remove Assumption ITR, so each person’s outcome may vary with the treatments
received by all members of the population. To express this, one extends the domain of
the response function from T to the Cartesian product of T across the population; that is
TJ ≡ × k∈J T . The response function becomes yj(·): TJ → Y , mapping treatment vectors tJ ∈ TJ

into outcomes yj(tJ) ∈ Y . Here tJ ≡ (tk, k ∈ J) denotes a potential treatment vector specifying
the treatment to be received by every member of the population. Person j has observable realized
treatment zj ∈ T and realized outcome yj ≡ yj(zJ), where zJ ≡ (zk, k ∈ J).

I will take the research objective to be inference on the outcome distribution P[y(tJ)] that
would occur if the population were to receive any potential treatment vector tJ. Interest in P[y(tJ)]
may be motivated by a decision problem in which a planner chooses between the realized
treatments zJ and a policy that mandates treatment vector tJ. Then the planner wants to compare
P[y(tJ)] with P(y). Instances of such planning problems are studied in Graham (2011) and Manski
(2009, 2010).

In my earlier work studying prediction when all persons receive a common treatment, I have
let t denote the specified common treatment. Here I let t be the random variable generated by tJ.
Thus, P(y, z, t) is the empirical distribution of (yj, zj, tj; j ∈ J). I will use τ rather than t to denote
a specific element of T .

1.2. Identification of potential outcome distributions

Comparison of the setup with and without Assumption ITR makes plain that identification
without the assumption presents a much more severe challenge than with it. Given Assumption
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ITR and no further assumptions, the Law of Total Probability shows that H{P[y(tJ)]}, the
identification region for P[y(tJ)], is the set of distributions [P(y|z = t)P(z = t) + δP(z �= t), δ

∈ �Y ], where �Y denotes the space of all probability distributions on Y . This region is a proper
subset of �Y if and only if P(z = t) > 0, which occurs when a positive fraction of the population
receive the same realized and potential treatment. I have previously reported this simple result
in Manski (2003, Chapter 7) and elsewhere for the case when tJ assigns a common treatment to
all persons. Section 2 below extends it to the general case where tJ is a vector of treatments that
may vary across the population.

Without Assumption ITR or another assumption restricting social interactions, H{P[y(tJ)]}
is the singleton P(y) when zJ = tJ and is the set �Y of all distributions whenever zJ �= tJ. Thus,
the empirical evidence alone is uninformative about P[y(tJ)] when tJ has any counterfactual
component. Partial or point identification of P[y(tJ)] may become feasible when the empirical
evidence is combined with assumptions that restrict the shape of the response functions [yj(·),
j ∈ J] and/or the distribution P[y(·), z] of response functions and realized treatments. The resulting
form of H{P[y(tJ)]} depends on the assumptions imposed and the treatment vector tJ under
consideration.

1.3. Organization of the paper

This paper is entirely general with respect to the potential treatment vector, but focuses on
particular classes of assumptions. Sections 2 and 3 study two shape restrictions on response
functions, constant treatment response (CTR) and semi-monotone treatment response (SMTR).

Assumption CTR posits that a person’s outcome remains constant when tJ varies within
specified subsets of TJ . I refer to these subsets of TJ as the person’s effective treatments.
Leading cases are assumptions asserting that interactions may occur within but not across known
reference groups. Then a person’s outcome remains constant when treatment varies outside his
reference group. Assumption ITR is the special case where each person is his own reference
group.

Assumption SMTR states that set T is partially ordered and that outcomes vary monotonically
across ordered pairs of treatment vectors. Important subcases are reinforcing and opposing
interactions. A reinforcing interaction occurs when a person’s outcome increases both with
the value of his own treatment and with the values of the treatments received by others in the
reference group. An opposing interaction occurs when a person’s outcome increases with the
value of his own treatment but decreases with the values of the treatments received by others.

In the analysis of Sections 2 and 3, a response function is a primitive that maps treatment
vectors into outcomes. Section 4 shows how Assumptions CTR and SMTR may be derived
from models of endogenous interactions. The primitive in such a model is a system of structural
equations that take the outcome of each person to be a function of the treatment vector and of the
outcomes of other members of the population. The response functions [yj(·), j ∈ J] are a derived
concept.

Section 5 combines Assumption CTR with the distributional assumption that potential
outcomes are statistically independent of realized effective treatments. I show that P[y(tJ)]
is point-identified if and only if every effective treatment that occurs with positive empirical
probability in tJ also occurs with positive empirical probability in zJ . This requirement is
transparent under Assumption ITR, but is more subtle with treatment interactions. I show
that it generically fails to hold in two settings where interactions are global in nature.
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Moreover, random assignment of treatments loses its classical identifying power in these
settings.

2. CONSTANT TREATMENT RESPONSE

Constant-response assumptions assert that treatment response does not vary over specified sets of
treatment vectors. Section 2.1 poses the assumption in abstraction and establishes its identifying
power. Section 2.2 describes the leading case of interactions within reference groups. Section 2.3
specializes further to anonymous, distributional and functional interactions. Section 2.4 briefly
discusses estimation with data on a random sample of the population.

It will be evident that constant-response assumptions have only limited identifying power.
Nevertheless, they are highly important to analysis of treatment response. They are basic
assumptions that provide a foundation on which further assumptions may be placed.

2.1. The assumption in abstraction

Consider person j. Let cj(·): TJ → Cj be a function mapping treatment vectors onto a set Cj. A
constant-response assumption asserts:

ASSUMPTION CTR.

cj (tJ ) =cj(s
J ) ⇒ yj (tJ ) =yj (sJ ). (2.1)

Thus, j experiences the same outcome for all treatment vectors that form a level set of cj(·).
With this in mind, I shall refer to Cj as the set of effective treatments for person j.

The present definition of Assumption CTR generalizes one given in Manski and Pepper
(2009), who named the concept in an individualistic-response context considering treatments
with multiple components. There we defined CTR as an exclusion restriction asserting that a
person’s outcome remains constant when some treatment components are altered, holding the
other components fixed. We did not, however, study the identifying power of the assumption.

Suppose that one observes [cj(·), yj, zj; j ∈ J]; thus, function cj(·) is an observed covariate.
Consider inference on yj(tJ). The researcher can infer yj(tJ) if and only if cj(zJ) = cj(tJ). When
this event occurs, zJ and tJ are effectively the same treatment from the perspective of person
j, yielding the same outcome yj(tJ) = yj(zJ) = yj. When cj(zJ) �= cj(tJ), Assumption CTR and
observation of yj do not reveal yj(tJ).

Now consider identification of P[y(tJ)]. By the Law of Total Probability,

P [y(tJ )] = P [y(tJ )|c (zJ ) =c(tJ )] · P [c(zJ ) =c(tJ )]

+ P [y(tJ )|c (zJ ) �= c (tJ )] P [c(zJ ) �= c(tJ )]. (2.2)

Here P[c(zJ) = c(tJ)] is the fraction of the population for whom [c(zJ) = c(tJ)], and
P[y(tJ)|c(zJ) = c(tJ)] is the distribution of outcomes conditional on this event. Observation of
realized treatments reveals P[c(zJ) = c(tJ)] and P[c(zJ) �= c(tJ)]. Assumption CTR implies that
P[y(tJ)|c(zJ) = c(tJ)] = P[y|c(zJ) = c(tJ)]. Observation of realized treatments and outcomes
reveals P[y|c(zJ) = c(tJ)] when P[c(zJ) = c(tJ)] > 0. The empirical evidence and Assumption
CTR are uninformative about the counterfactual outcome distribution P[y(tJ)|c(zJ) �= c(tJ)].
Hence, we have
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PROPOSITION CTR. Given Assumption CTR, the identification region for P[y(tJ)] is

H {P [y(tJ )]} = {P [y|c(zJ ) = c(tJ )] · P [c(zJ ) = c(tJ )] + δP [c(zJ ) �= c(tJ )], δ ∈ �Y }.
(2.3)

Observe that the size of H{P[y(tJ)]} varies inversely with P[c(zJ) = c(tJ)]. The region is the
singleton P(y) when P[c(zJ) = c(tJ)] = 1. It expands as P[c(zJ) = c(tJ)] decreases, and becomes
uninformative when P[c(zJ) = c(tJ)] = 0.

2.2. Interactions within reference groups

2.2.1. Concepts and notation. It is common in applications to assume that each member of the
population has a known reference group, with interactions occurring within but not across groups.
A person’s reference group may be assumed to be the members of his family, neighbourhood,
school, workplace, or some other group, depending on the context. One might, for example,
assume that treatment interactions may occur within but not across neighbourhoods.

Let G(j) ⊂ J denote the reference group of person j, let TG(j) ≡ × k ∈G(j) T , and let tG(j) ≡ [tk,
k ∈ G(j)] be the sub-vector of tJ specifying the treatments assigned to the members of the group.
For j ∈ J and tJ ∈ TJ , let Cj = TG(j) and cj(tJ) = tG(j). Then an effective treatment for person j is
the sub-vector of treatments in his reference group. A person’s outcome remains constant when
treatments outside the group are altered, holding fixed the treatments of persons in the group.

As defined here, reference groups are person-specific, treatment-invariant and non-
manipulable. Person-specific means that person k may be a member of person j’s group but
not vice versa. It is often assumed that reference groups are symmetric, with person k being a
member of j’s group if and only if j belongs to k’s group. However, symmetry is not descriptive of
all interactions. Asymmetry is expressed graphically in social network analysis when a directed
path either directly or indirectly connects person k to j, but no directed path connects j to k.

While the notation G(j) makes the reference group person-specific, it does not permit the
group to be treatment-specific. I could expand the notation to G(j, tj), letting the group vary with
person j’s own potential treatment, or even to G(j, tJ), letting it vary with the entire potential
treatment vector. However, I will reserve the term reference group for cases in which the group
is the same, whatever the treatment vector may be. The general idea of Assumption CTR covers
cases in which the persons who interact vary across treatments, but I will not refer to these cases
as interactions within reference groups.

Given that reference groups are treatment-invariant, they necessarily are non-manipulable.
That is, a planner cannot use the treatments in T to change a person’s reference group.

2.2.2. Analysis. Consider inference on yj(tJ). The researcher knows the value of yj(tJ) if and
only if zG(j) = tG(j). Applying (2.3), the identification region for P[y(tJ)] is

H {P [y(tJ )]} = [P (y|zG = tG) · P (zG = tG) + δP (zG �= tG), δ ∈ �Y ]. (2.4)

Two polar cases of interactions within reference groups are unrestricted interactions, where
reference groups are the entire population, and individualistic treatment response, where
reference groups are single persons. In the former case, G(j) = J for all j ∈ J. Then (2.4) becomes

H {P [y(tJ )]} = [P (y|zJ = tJ ) · P (zJ = tJ ) + δP (zJ �= tJ ), δ ∈ �Y ]. (2.5)
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All persons face the same realized treatment vector zJ . Hence, P(zJ = tJ) = 1 if zJ = tJ and
P(zJ = tJ) = 0 if zJ �= tJ . Thus, H{P[y(tJ)]} = P(y) if zJ = tJ and H{P[y(tJ)]} = �Y if zJ �= tJ .
This shows that observation of realized treatments and outcomes per se is uninformative about
the outcome distribution with a counterfactual treatment vector.

When response is individualistic, G(j) = j for all j ∈ J. Then (2.4) becomes

H {P [y(tJ )]} = [P (y|z = t) · P (z = t) + δ · P (z �= t), δ ∈ �Y ]. (2.6)

Result (2.6) extends my earlier work on identification with individualistic treatment response.
I have earlier reported (2.6) for the special case in which the potential treatment vector tJ

assigns the same treatment to all members of the population; see, for example, Manski (2003,
Chapter 7). Then the treatment t on the right-hand side of (2.6) is the common treatment, say
τ , and tJ = (τ , τ , . . . . , τ ). Now (2.6) holds in the general case where tJ may be any treatment
vector, possibly assigning different treatments to different persons.

The size of region (2.6) varies inversely with the magnitude of P(z = t); that is, with
the fraction of the population who have the same realized and potential treatments. Point-
identification occurs if and only if P(z = t) = 1, which requires that zJ = tJ if J is a countable
population and permits deviation of zJ from tJ only on a negligible set of persons when J is a
continuum. Region (2.6) grows smoothly from the singleton P(y) to the entire space �Y as P(z =
t) decreases from 1 to 0. This contrasts sharply with the unrestricted-interaction region (2.5),
which equals �Y whenever P(z = t) < 1.

2.3. Anonymous, distributional and functional interactions

2.3.1. Anonymous interactions. Region (2.4) characterized identification under the sole
assumption that interactions occur within reference groups. The assumption that an interaction
is anonymous goes further by asserting that the outcome of person j is invariant with respect to
permutations of the treatments received by other members of his group. This further assumption
is empty when the reference group contains only one person other than j, but is meaningful when
the reference group is larger.

Consider, for example, vaccination of some children in a community. When considering
illness from an infectious disease, one might think it credible to take each child’s reference group
to be the set of children who attend the same school. One might additionally think it credible to
assume that each child’s illness outcome may depend on his own vaccination treatment and on
the number of children vaccinated in his school, but not on the identities of the other schoolmates
vaccinated.

Formally, let G(j)/j denote the reference group exclusive of person j himself and let π [tG(j)/j]
denote the set of permutations of treatment vector tG(j)/j. If G(j)/j is empty, define tG(j)/j to be
empty as well. Applying (2.3), the identification region is

H {P [y(tJ )]} = {[P (y|z = t, zG/ ∈ π (tG/)] · P [z = t, zG/ ∈ π (tG/)]

+ δ · P [z �= t or zG/ /∈ π (tG/)], δ ∈ �Y }. (2.7)

This region is a subset of the region (2.4) obtained when it was assumed only that interactions
occur within reference groups. Here the researcher knows the value of yj(tJ) when the event
[zj = tj, zG(j)/j ∈ π (tG(j)/j)] occurs. Previously, yj(tJ) was known when zG(j) = tG(j). The latter
event implies the former one.
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2.3.2. Distributional interactions. A distributional interaction strengthens an anonymous one
by supposing that treatment response is invariant with respect to the size of the reference group
and to permutations of the treatments received by other members of the group. Thus, the outcome
of person j may vary only with his own treatment and with the empirical distribution of treatments
among other members of the group.

Let �T denote the space of all distributions on T . For tJ ∈ TJ , let Q(tG(j)/j) be the empirical
distribution of the treatments in tG(j)/j. Thus, for τ ∈ T , Q(tG(j)/j = τ ) is the fraction of the
persons in G(j)/j who receive treatment τ when tJ is the potential treatment vector. If group G(j)/j
is empty, define Q(tG(j)/j) = φ, where φ denotes the empty set. Then the identification region is

H {P [y(tJ )]} = {[P (y|z = t,Q(zG/) = Q(tG/)] · P [z = t,Q(zG/) = Q(tG/)]

+ δ · P (z �= t or Q(zG/) �= Q(tG/), δ ∈ �Y }. (2.8)

This region is a subset of the region (2.7) obtained when it was assumed only that interactions
are anonymous. Here the researcher knows the value of yj(tJ) when the event [zj = tj, Q(zG(j)/j) =
Q(tG(j)/j)] occurs. Previously, yj(tJ) was known when [zj = tj, zG(j)/j ∈ π (tG(j)/j)]. The latter event
implies the former one.

2.3.3. Functional interactions. Applied researchers often assume not only that interactions
are distributional but also that Q(tG(j)/j) affects outcomes solely through some functional of
the distribution, say F(tG(j)/j). A leading case is the mean interaction, where treatments are
real-valued and F(tG(j)/j) = E(tG(j)/j), the empirical mean of the treatments in tG(j)/j. A mean
interaction is equivalent to a distributional interaction when set T has two treatments. It is a
stronger assumption when there are more than two.

Another case of interest is the supremum interaction, where treatments are ordered and
F(tG(j)/j) = sup(tG(j)/j). Suppose that a treatment is information communicated within a
reference group. Suppose that information treatments are ordered, with τ > τ ′ meaning that
a person with treatment τ receives all of the information in τ ′, plus some more. Then
communication within the group ensures that person j effectively receives treatment sup(tG(j)).

Whatever functional F may be, the identification region is

H {P [y(tJ )]} = {[P (y|z = t, F (zG/) = F (tG/)] · P [z = t, F (zG/) = F (tG/)]

+ δ · P [z �= t or F (zG/) �= F (tG/)], δ ∈ �Y }. (2.9)

This region is a subset of the region (2.8) obtained when it was assumed only that interactions
are distributional. Here the researcher knows the value of yj(tJ) when the event [zj = tj,
F(zG(j)/j) = F(tG(j)/j)] occurs. Previously, yj(tJ) was known when [zj = tj, Q(zG(j)/j) = Q(tG(j)/j)].
The latter event implies the former one.

2.4. Estimation with data on a random sample of the population

Although this paper is about identification, I would be remiss to entirely ignore estimation with
sample data. When analysing identification, I assume that one observes [cj(zJ), cj(tJ), yj] for every
member of the population. Now suppose that one draws a random sample of N persons, say JN ,
and observes [cj(zJ), cj(tJ), yj] only for j ∈ JN . Let PN denote the empirical distribution of JN .
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Then one may consistently estimate identification region (2.3) by its sample analogue

H {PN [y(tJ )]} ≡ {PN [y|c(zJ ) = c(tJ )] ·PN [c(zJ ) = c(tJ )] + δ · PN [c(zJ ) �= c(tJ )], δ ∈ �Y }.
(2.10)

Statistical inference on parameters of P[y(tJ)] may be performed using the methods
developed over the past decade for settings with partial identification. For example, the method
of Imbens and Manski (2004) may be used to compute confidence intervals for the mean outcome
E[y(tJ)].

The only subtlety of estimation with sample data is that application of (2.10) requires
observation of sample members’ realized and potential effective treatments, not just their
own treatments. Excepting the special case of individualistic treatment response, the effective
treatments of sample members generically depend on the treatments received by non-sample
members. One must observe the treatments of all persons in a sample member’s reference group
even though some of these persons may not themselves be sample members. However, one does
not need to observe the outcomes realized by non-sample members.

Observation of the treatments received by non-sampled persons in reference groups is
realistic in some applied settings. Realized treatments for the entire population may be set by
known regulations, may be observable prices, or may be recorded in accessible administrative
databases. When population treatment data are not available in these ways, a survey researcher
might ask sample members to report the treatments received by their reference groups. For
example, if reference groups are families, a sample member might be asked not only to report
her own treatment but also those received by other family members.

3. SEMI-MONOTONE TREATMENT RESPONSE

The constant-response assumptions considered in Section 2 were nested. Functional interactions
strengthen distributional interactions, which strengthen anonymous interactions, which in turn
strengthen interactions within a reference group. The various identification regions presented
above were correspondingly nested sets. However, even the strongest of these assumptions has
only limited identifying power.

Smaller identification regions emerge if the assumption that response is constant within level
sets of c(·) is combined with the assumption that response is semi-monotone across level sets.
Section 3.1 poses the assumption in abstraction and establishes its identifying power. Sections 3.2
and 3.3 present the polar cases of reinforcing and opposing interactions. As a further case study,
Section 3.4 introduces monotone metric interactions. Section 3.5 uses vaccination as treatment
for infectious disease to illustrate application of Assumptions CTR and SMTR.

3.1. The assumption in abstraction

Suppose that some constant-response assumption has been imposed. Considering person j, let the
set Cj of effective treatments be partially ordered. Thus, given a pair of distinct values (c, c′) ∈
Cj × Cj, either c < c′ or c > c′ or (c, c′) are unordered, in which case I write c ø c′. Let the
outcome space Y be a subset of the real line. Let tJ and sJ be two potential treatment vectors. The
assumption of semi-monotone response asserts

C© 2013 The Author(s). The Econometrics Journal C© 2013 Royal Economic Society.
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ASSUMPTION SMTR.

cj (tJ ) ≥ cj (sJ ) ⇒ yj (tJ ) ≥ yj (sJ ). (3.1)

This assumption encompasses Assumption CTR, as the equality cj(tJ) = cj(sJ) is equivalent
to the two inequalities cj(tJ) ≥ cj(sJ) and cj(tJ) ≤ cj(sJ).

Considering individualistic response, Manski (1997), Proposition S1 showed that observation
of realized treatments and outcomes combined with assumption SMTR yields a sharp bound
on any parameter of the outcome distribution that respects stochastic dominance. It is
straightforward to extend the argument to settings with social interactions.

Consider the outcome of person j when the treatment vector is tJ . Let y0 ≡ inf Y and y1 ≡ sup
Y be the logical lower and upper bounds on outcomes. Combining the empirical evidence with
assumption SMTR yields this sharp bound on yj(tJ):

cj (tJ ) < cj (zJ ) ⇒ y0 ≤ yj (tJ ) ≤ yj

cj (tJ ) = cj (zJ ) ⇒ yj (tJ ) = yj

cj (tJ ) > cj (zJ ) ⇒ yj ≤ yj (tJ ) ≤ y1

cj (tJ ) ∅ cj (zJ ) ⇒ y0 ≤ yj (tJ ) ≤ y1.

(3.2)

Let yjL(tJ) and yjU(tJ) denote the lower and upper bounds on yj(tJ) stated in (3.2). Given that
(3.2) holds for all j ∈ J, the population distribution of yjU(tJ) stochastically dominates that of
y(tJ), which in turn dominates that of yjL(tJ). Given that (3.2) exhausts the available information,
we have

PROPOSITION SMTR. Given Assumption SMTR, the identification region for P[y(tJ)] is

H {P [y(tJ )]} = {δ ∈ �Y : P [yU (tJ )] ≥sd δ ≥sd P [yL(tJ )]}. (3.3)

Here ≥sd denotes the weak stochastic dominance relationship.
Let D be any parameter of the outcome distribution that respects stochastic dominance. For

example, D may be a quantile or the mean of an increasing function of the outcome. Region (3.3)
immediately yields this sharp bound on D[y(tJ)]:

D[yL(tJ )] ≤ D[y(tJ )] ≤ D[yU (tJ )]. (3.4)

Considering individualistic response, Manski (1997), Corollaries S1.1–S1.3 gave the explicit
form of bound (3.4) for various D-parameters. The extensions to settings with social interactions
are immediate. In particular, the result for the mean outcome E[y(tJ)] is

y0 · P [c(tJ ) <c(zJ ) ∪ c(tJ ) ∅ c(zJ )] + E[y|c(tJ ) ≥ c(zJ )] · P [c(tJ ) ≥ c(zJ )] ≤ E[y(tJ )]

≤ y1 · P [c(tJ ) >c(zJ ) ∪ c(tJ ) ∅ c(zJ )] + E[y|c(tJ ) ≤ c(zJ )] · P [c(tJ ) ≤ c(zJ )]. (3.5)

3.2. Reinforcing interactions

I defined reinforcing interactions verbally in the Introduction. Formally, let T be partially ordered.
Let j have reference group G(j) and let TG(j) inherit the partial ordering on T . That is, given two
treatment vectors tJ and sJ, let cj(tJ) ≥ cj(sJ) mean that [tk ≥ sk, all k ∈ G(j)]. A reinforcing
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interaction occurs when

[tk ≥ sk, all k ∈ G(j )] ⇒ yj (tJ ) ≥ yj (sJ ). (3.6)

When (3.6) holds, the response function increases with the treatment that person j receives
and with the treatments of other members of the reference group. Thus, the treatments received
by others reinforce a person’s own treatment.

Consider, for example, vaccination against an infectious disease. Vaccination of person j may
reduce the chance that this person will become ill, and vaccination of other persons may also
reduce his probability of illness, reinforcing the effect of own vaccination. Or consider provision
of tutoring to a class of students. Tutoring student j may increase his achievement, and tutoring
other students in the class may help him achieve as well.

3.2.1. Reinforcing distributional interactions. The definition of a reinforcing interaction stated
in (15) orders treatment vectors only when every member of the reference group of person j
receives at least as large a treatment with tG(j) as with sG(j). Suppose that the social interaction
is distributional. Then we may strengthen the idea of a reinforcing interaction by letting cj(tJ) ≥
cj(sJ) mean that [tj ≥ sj, Q(tG(j)/j) ≥sd Q(sG(j)/j)]. A reinforcing distributional interaction occurs
when

[tj ≥ sj ,Q(tG(j )/j ) ≥sd Q(sG(j )/j )] ⇒ yj (tJ ) ≥ yj (sJ ). (3.7)

The event [tk ≥ sk, all k ∈ G(j)] implies the event [tj ≥ sj, Q(tG(j)/j) ≥sd Q(sG(j)/j)]. Hence, a
reinforcing distributional interaction orders all treatment pairs that are ordered by a reinforcing
interaction, and possibly more. It follows that the present identification region for P[y(tJ)] is a
subset of the one obtained when the interaction is only assumed reinforcing.

When person j’s reference group is large, the stochastic dominance inequality Q(tG(j)/j) ≥sd

Q(sG(j)/j) appearing in (3.6) is approximately the same as Q(tG(j)) ≥sd Q(sG(j)), which includes j
in the group distribution. The latter inequality is simpler to use in some applications.

3.2.2. Reinforcing D-interactions. A yet smaller identification region results when a
distributional interaction is assumed to be a functional interaction, where the functional is a
parameter D that respects stochastic dominance. Now take c(tJ) ≥ c(sJ) to mean that [tj ≥ sj,
D(tG(j)/j) ≥ D(sG(j)/j)]. A reinforcing D-interaction occurs when

[tj ≥ sj ,D(tG(j )/j ) ≥ D(sG(j )/j )] ⇒ yj (tJ ) ≥ yj (sJ ). (3.8)

The event [tj ≥ sj, Q(tG(j)/j) ≥sd Q(sG(j)/j)] implies the event [tj ≥ sj, D(tG(j)/j) ≥ D(sG(j)/j)].
Hence, a reinforcing D-interaction orders all treatment pairs that are ordered by a reinforcing
distributional interaction, and possibly more. Therefore, the present identification region for
P[y(tJ)] is a subset of the one obtained with a reinforcing distributional interaction.

3.3. Opposing interactions

An opposing interaction reverses the direction of the inequality relating a person’s outcome to
the treatments received by other members of his reference group. An opposing interaction occurs
when

[tj ≥ sj , {tk ≤ sk,k ∈ G(j )/j}] ⇒ yj (tJ ) ≥ yj (sJ ). (3.9)
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When (3.9) holds, the response function increases with the treatment that person j receives
and decreases with the treatments of other members of the reference group. Thus, the treatments
received by others act in opposition to a person’s own treatment.

Consider, for example, training that provides occupation-specific human capital. Training
person j may increase the chance that this person finds employment in the occupation. Training
other persons increases the supply of trained labour and, hence, may decrease the probability that
person j finds employment.

Opposing distributional and D-interactions are defined in the obvious way. The former occurs
when

[tj ≥ sj ,Q(sG(j )/j ) ≥sd Q(tG(j )/j )] ⇒ yj (tJ ) ≥ yj (sJ ). (3.10)

The latter occurs when

[tj ≥ sj ,D(sG(j )/j ) ≥ D(tG(j )/j )] ⇒ yj (tJ ) ≥ yj (sJ ). (3.11)

3.4. Monotone metric interactions

Whereas much empirical research assumes that social interactions are anonymous, some studies
position persons spatially on social networks and suppose that the strength of interaction between
two persons decreases with the distance between them. Distance may be purely geographic—
a person may interact most closely with members of his household and successively less
closely with residents of his block, neighbourhood, city and nation. Or the metric measuring
social distance may jointly consider geography, occupation, political views, religion and other
attributes.

The ordinal essence of this idea may be formalized as a case of semi-monotone treatment
response. To begin, partially order the members G(j) of person j’s reference group in terms of
their distance from j. Thus, list j as the first member of the group, with distance zero from himself.
Next list the member of G(j)/j closest to j, and so on. If multiple persons are equidistant from j,
they are unordered relative to one another. Let G∗(j) denote the partially ordered version of G(j).

Now compare response to certain permutations of a specified treatment vector. In particular,
consider re-allocations in which two group members who differ in distance from j exchange
treatments. Whereas the person closer to j originally was to receive the smaller of their two
treatments, the exchange makes this person receive the larger treatment. I will say that a
monotone metric interaction occurs if any such re-allocation weakly increases the outcome
experienced by j.

Formally, let sG∗(j) be a specified vector of reference-group treatments. Let cj(tJ) ≥ cj(sJ)
mean that tG∗(j) is a permutation of sG∗(j) that exchanges the treatments of two ordered group
members, say k and m, with k < m, sk < sm, tk = sm and tm = sk. A monotone metric interaction
occurs if yj(tJ) ≥ yj(sJ).

3.4.1. Example: incentives for clean-burning fuels. Consider a geographic region subject to
air pollution created by residential burning of fossil fuels for heating and cooking. Let treatments
be taxes or regulations that provide incentives for use of clean-burning fuels. Let the outcomes
of interest be the health status of the residents of the region.

In this context, one may find it credible to assume that treatment interactions are both
reinforcing and monotone metric. Reinforcing means that region-wide strengthening of the
incentives for use of clean fuels improves the health status of all persons in the region.
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Monotone metric means that the health status of person j improves with a reallocation of
heterogeneous incentives within the region, strengthening them for persons who live close to
j and correspondingly weakening them for persons who live far from j.

The assumption of a reinforcing interaction has relatively transparent credibility. A region-
wide strengthening of incentives should induce all residents to use cleaner fuels and, hence,
reduce pollution region wide. Supposing that health status decreases with exposure to pollution,
the result should be a region-wide increase in health status.

Assessment of the monotone-metric assumption is more subtle. The envisioned reallocation
of incentives should induce use of cleaner fuels by residents who live close to j and dirtier fuels
by those who live far from j. Suppose that pollution decays with distance from the source of
the burning. Suppose also that persons who live at different distances from j respond similarly
to incentives. Then the reallocation should yield a net reduction in the exposure of person j to
pollution.

3.5. Vaccination against infectious disease

This section uses a simple scenario of vaccination against infectious disease to illustrate some
of the findings of Sections 2 and 3. Let T = {0, 1}, with (τ = 1) denoting vaccination and
(τ = 0) no vaccination. Let the outcome of interest be a binary measure of health status, with
y = 1 if a person remains in good health and y = 0 if he becomes ill with the disease. Then
sufficient statistics for the distribution P(y, z) of realized treatments and outcomes are P11 ≡
P(y = 1|z = 1), P10 ≡ P(y = 1|z = 0) and p ≡ P(z = 1). The realized probability of good health
is P(y = 1) = pP11 + (1 – p)P10.

Consider a potential treatment vector tJ that increases the population rate of vaccination from
p to some q > p. In particular, tJ sets tj = 1 for all persons with zj = 1 and for some of those
with zj = 0.

The objective is to learn P[y(tJ) = 1]. One may interpret P[y(tJ) = 1] retrospectively as the
population rate of good health that would have occurred if vaccination had been performed for
all persons who were actually vaccinated and for a specified subset of those who were not. Or
one may interpret P[y(tJ) = 1] prospectively as the health rate that will occur if treatment vector
tJ is applied to a new population that is identical in composition to the study population.

The identification region for P[y(tJ) = 1] depends on the maintained assumptions. I first
assume that treatment is individualistic and then add the assumption of monotone treatment
response, in the sense that vaccination never lowers health status and may improve it. I next
consider a reinforcing interaction within the population as a whole.

3.5.1. Individualistic response. Suppose that a person’s health status depends only on his
own treatment. This assumption is not credible when considering an infectious disease, but I
begin with it to provide contrast with the findings when social interactions are considered. The
identification region under Assumption ITR was given in (2.6). With a binary outcome, (2.6)
becomes the interval

H {P [y(tJ ) = 1]} = [P (y = 1|z = t) · P (z = t),P (y = 1|z = t) · P (z = t)+P (z �= t)]. (3.12)

Consider the fraction P(z = t) of the population whose realized and potential treatments
coincide. This includes the group of size p who realize treatment 1, all of whom would continue
to receive it under tJ . It also includes the group of size 1 – q which realizes treatment 0 and would
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continue to receive it under tJ . Hence, P(z = t) = p + 1 – q. Correspondingly, P(z �= t) = q – p.
Observe that P(z �= t) is the width of the interval on the right-hand side of (3.12).

Consider P(y = 1|z = t), the probability of good health in the group with (z = t). It is the case
that

P (y = 1|z = t) = P (y = 1|z = t = 1) · P (z = 1|z = t) + P (y = 1|z = t = 0) · P (z = 0|z = t)

= P11[p/(p + 1 − q)]+P (y = 1|z = t = 0) · [(1 − q)/(p + 1 − q)]. (3.13)

The first equality applies the Law of Total Probability. Our derivation of P(z = t) shows that
P(z = 1|z = t) = p/(p + 1 – q) and P(z = 0|z = t) = (1 − q)/(p + 1 − q). We have P(y =
1|z = t = 1) = P11 because z = 1 ⇒ t = 1. We have not yet encountered P(y = 1|z = t = 0),
the probability of good health in the group who realized treatment 0 and who would continue to
receive 0 under tJ . This conditional probability is revealed by the empirical evidence once tJ is
specified. Hence, all quantities on the right-hand side of (3.13) are known.

3.5.2. Monotone-individualistic response. Continue to suppose that a person’s health status
depends only on his own treatment. Also suppose that treatment response is monotone in the
sense that yj(1) ≥ yj(0) for all j ∈ J. This is credible in settings where vaccines do not have
adverse side effects. Then vaccination never makes a person worse off and may improve his
health status.

The identification region is given by (3.5), which reduces in the present case to

H {P [y(t J) = 1]} = [P (y = 1|t ≥ z) · P (t ≥ z),P (t > z) +P (y = 1|t ≤ z) · P (t ≤ z)]. (3.14)

The inequality tJ ≥ zJ holds in this illustration. Hence, P(t ≥ z) = 1, P(t > z) = q − p and
P(t ≤ z) = P(t = z) = p + 1 − q. Moreover, P(y = 1|t ≥ z) = P(y = 1) and P(y = 1|t ≤ z) = P(y
= 1|t = z), whose value was derived in (3.13). The result is

H {P [y(tJ ) = 1]} = [P (y = 1),q − p + P (y = 1|t = z) · (p + 1 − q)]. (3.15)

The lower bound is larger than the one obtained using Assumption ITR alone. The upper
bound is the same as with Assumption ITR alone.

3.5.3. Reinforcing interactions. Now suppose that a person’s health status may depend on
the entire population vector of vaccination treatments. In the absence of any restrictions,
H{P[y(tJ) = 1]} is the [0, 1] interval. However, it is reasonable to assume that interactions are
reinforcing.

Application of (3.5) in the present setting gives

H {P [y(tJ ) = 1]} = [P (y = 1|tJ ≥ zJ ) · P (tJ > zJ ), P (tJ > zJ ∪ tJ ∅ zJ )

+ P (y = 1|tJ ≤ zJ ) · P (tJ ≤ zJ )]. (3.16)

We have tJ > zJ by design. Hence, (3.16) reduces to

H {P [y(tJ ) = 1]} = [P (y= 1), 1]. (3.17)

The lower bound is the same as with the assumption of monotone-individualistic response.
The upper bound is 1 because a reinforcing interaction permits the possibility that increasing the
vaccination rate completely eliminates disease transmission.
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4. DERIVATION OF ASSUMPTIONS CTR AND SMTR FROM MODELS
OF ENDOGENOUS INTERACTIONS

I have thus far viewed a response function as a primitive concept mapping population treatments
into personal outcomes. Hence, I posed Assumptions CTR and SMTR as direct restrictions
on this function. Researchers often model the social mechanism mapping treatments into
outcomes. Economists relate outcomes to choices made by members of the population and
suppose that these choices express individual optimizing behaviour and the equilibria of
games. Epidemiologists studying treatment of infectious diseases study models of infection and
contagion.

From the perspective of such models, response functions are not primitives but rather are
quantities whose properties stem from the mechanism under study. Hence, Assumptions CTR
and SMTR should be derived rather than posed directly. In this section, I consider Assumptions
CTR and SMTR from the viewpoint of econometric models of endogenous interactions.

4.1. Concepts and notation

The primitive in a model of endogenous interactions is a system of structural equations that takes
the outcome of each person to be a function of population treatments and outcomes. Formally,
one supposes that the potential outcome vector yJ(tJ) ≡ [yj(tJ), j ∈ J] solves the structural
equations

yj (tJ ) =fj [tj ,t
J/j ,yJ/j (tJ )],j ∈ J . (4.1)

Here tJ/j ≡ (tk, k ∈ J, k �= j) and yJ/j(tJ) ≡ [yk(tJ), k ∈ J, k �= j] are the treatment and outcome
vectors for the population exclusive of person j.

The structural function fj(·) permits yj(tJ) to be determined by j’s own treatment as well
as by the treatments and outcomes of other members of the population. The term endogenous
interaction describes yJ/j(tJ) as an argument of fj(·). If yJ/j(tJ) were not an argument, fj(·) would
simply be the person’s response function. The presence of yJ/j(tJ) makes (4.1) a system of
simultaneous equations.

The term exogenous interaction describes tJ/j as an argument of fj(·). It is important to
differentiate between tJ/j as an argument of fj(·) and as an argument of the response function
yj(·). In a pure endogenous interactions model, tJ/j is not an argument of fj(·). Yet tJ/j may still
affect response through the system of simultaneous equations.

An outcome vector yJ(tJ) that solves (4.1) is said to be a reduced form of the structural
equations. A model is complete if (4.1) has a unique solution for all feasible structural functions.
A model is incomplete if (4.1) may have multiple solutions or no solutions. Incomplete models
are not abnormal. Structural equations with multiple solutions may describe games with multiple
equilibria. Those with no solutions may describe games with no equilibria. See, for example,
Brock and Durlauf (2001) and Tamer (2003).

Here are two examples of endogenous interactions models.

EXAMPLE 4.1. Consider illness from an infectious disease. Let the outcome of interest
measure health status. Let the treatment be vaccination status. Illness may vary with a person’s
own vaccination status, the status of others (an exogenous interaction) and the illness outcomes
of others (an endogenous interaction).
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EXAMPLE 4.2. Consider labour supply in a population of husband-wife couples. Let the
outcome of interest be hours worked. Let the treatment be a person’s market wage. One may think
it reasonable to assume that labour-supply interactions occur only within couples, not between
them. Within each couple, a person’s labour supply may vary with his or her own wage, the
wage of the spouse (an exogenous interaction) and the spouse’s labour supply (an endogenous
interaction).

Sections 4.2 and 4.3 relate identification of structural functions and response functions in
abstraction. Section 4.4 considers derivation of Assumption CTR from models of endogenous
interactions, focusing on the determination of reference groups. Section 4.5 considers derivation
of Assumption SMTR from such models, focusing on reinforcing interactions.

4.2. Identification of structural functions and response functions

Econometricians have long studied identification of structural functions. Observation of realized
treatments and outcomes reveals that

yj=fj (zj ,z
J/j ,yJ/j ), j ∈ J . (4.2)

Thus, the empirical evidence pins down one point on the structural function of each
population member. Econometricians have combined this evidence with restrictions on f J, the
objective being identification of features of these structural functions. Classical econometric
analysis of structural equations begins by assuming that each fj is a linear function of its
arguments and then adds further assumptions to achieve point identification of the entire vector
f J. See Goldberger (1991) for a textbook exposition. Recent analysis of so-called linear-in-means
models proceeds similarly, with particular attention to separation of exogenous and endogenous
interactions. See Manski (1993).

Our concern is identification of response functions, not structural functions. From this
perspective, it is not important to determine the mechanism through which population treatments
affect personal outcomes. A model of endogenous interactions is useful if credible assumptions
on f J(·) imply restrictions on yJ(·). Our particular concern is identification of P[y(tJ)], the
empirical distribution of yJ(tJ).

While inference on structural functions has been the dominant theme of econometric
research, econometricians have occasionally observed that the objective may be to infer response
functions rather than structural functions. Arthur Goldberger put it this way in his ET Interview
(Kiefer and Goldberger, 1989, p. 150): ‘Well, that’s one position, that the entire content in a
structural model is simply in the restrictions, if any, that it implies on the reduced form—that’s
true. That gives priority to the reduced form’.

The relationship between identification of structural functions and response functions is
straightforward when the structural functions are linear in treatments and outcomes. Then
solution of the structural equations shows that response functions are linear in treatments. The
parameters of response functions are many-to-one functions of the parameters of the structural
functions. Hence, identification of response functions is a simpler objective than identification of
structural functions.

Outside of linear models, the relationship between identification of structural functions and
reduced forms is largely an open question. This question is much too broad for a comprehensive
analysis here, but I will make a small start. Section 4.3 calls attention to the fact that the
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relationship between structural and response functions differs qualitatively in complete and
incomplete models.

4.3. Complete and incomplete models

Given a complete model, identification of P[y(tJ)] is logically no more difficult than identification
of f J , and may be easier. With an incomplete model, identification of P[y(tJ)] may be more
difficult than identification of f J . I explain here. In what follows, � denotes the identification
region for f J .

Suppose first that the model is complete; thus, (4.1) has a unique solution for each element
of �. For each f J ∈ �, Let yJ(tJ , f J) denote this solution. Then the identification region for
yJ(tJ) is [yJ(tJ , f J), f J ∈ �]. The cardinality of this set cannot be larger than that of �, and it
may be smaller. In particular, a model that point-identifies f J necessarily point-identifies yJ(tJ).
Knowledge of yJ(tJ) implies knowledge of P[y(tJ)]. Hence, identification of P[y(tJ)] is logically
no more difficult than identification of f J .

Next suppose that the model is incomplete, with at least one solution to (4.1) for every
feasible value of f J and multiple solutions for some values. For each f J ∈ �, let ϒ(tJ , f J) denote
the set of solutions to the structural equations. Then the identification region for yJ(tJ) is {ϒ(tJ ,
f J), f J ∈ �}. In general, the cardinality of this set may be larger or smaller than that of �. It
necessarily is larger when the model point-identifies f J . Then f J is known, but ϒ(tJ , f J) contains
multiple elements. Hence, H{P[y(tJ)]} may contain multiple elements.

Finally, consider an incomplete model having no solution to (4.1) for some f J ∈ �. There are
two ways to interpret non-existence of a solution. One might interpret it to mean that the value of
f J under consideration is not feasible. Then one should eliminate this value from �. This done,
non-existence of a solution logically cannot occur.

Alternatively, one might interpret non-existence to mean that the endogenous-interactions
model is silent on yJ(tJ). Then the model has no identifying power for P[y(tJ)]. This interpretation
is reasonable in analysis of games, where a finding that no equilibrium exists implies that the
specified equilibrium concept makes no prediction about the actions chosen by players.

4.4. Structural and response reference groups

With the above as background, we may ask what specific shape restrictions on structural
functions imply about the shape of response functions. This section considers how assumptions
specifying structural reference groups determine response groups. The next considers the
implications of structural monotonicity for response monotonicity.

Researchers modeling endogenous interactions regularly assume that interactions occur
within known reference groups. Let F(j) denote the structural reference group of person j. Then
a model may assume that

yj (tJ ) =fj [tj ,t
F (j )/j ,yF (j )/j (tJ )], j ∈ J . (4.3)

There exists no universal relationship between the structural reference group F(j) and the
response group G(j) defined in Section 2. However, having specified the structural groups of
an endogenous-interactions model, one can derive the implied response groups. I give three
illustrative polar cases here. I suppose throughout that the endogenous-interactions model is
complete.
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4.4.1. Symmetric Structural Groups. Let F be a group of persons and suppose that
membership in structural group F is symmetric. That is, F(j) = F for all j ∈ F. Then the structural
equations pertaining to persons in F are

yj (tF ) =fj [tj ,t
F/j ,yF/j (tF )],j ∈ F . (4.4)

Completeness of the model implies that these equations have a unique solution yj(tF),
j ∈ F. Hence, the members of F share the same response reference group, namely G(j) = F for all
j ∈ F.

4.4.2. Recursive Structural Groups. Let population J be an ordered set of persons, indexed
by the positive integers. Let the structural equations have the form

y1(tJ ) =f1(t1), (4.5a)

yj (tJ ) =fj [tj ,tj −1,yj−1(tJ )], j ∈ (2,. . . . ). (4.5b)

Thus, the structural reference group for person j is F(j) = (j − 1, j). Recursively solving the
equations shows that the response group for j is G(j) = (1, . . . , j).

4.4.3. Partly Responsive Structural Groups. Let the population contain two types of
persons. A person is responsive to treatment if the value of his structural function may vary
with his own treatment, all else equal. A person is unresponsive to treatment otherwise. Suppose
that no one is responsive to the treatments received by others. Let R denote the sub-population
of responsive persons. Thus, the structural equations are

yj (tJ ) =fj [tj ,y
J/j (tJ )], j ∈ R, (4.6a)

yj (tJ ) =fj [yJ/j (tJ )], j /∈ R. (4.6b)

Thus, the structural group for person j is F(j) = J if j ∈ R and F(j) = J/j if j �∈ R. Solving
the equations shows that, for all members of the population, outcomes may vary only with the
treatments of responsive persons. Hence, G(j) = R for all j ∈ J.

Observe how the relationship between structural and response reference groups differs
across these cases. Structural and response groups are identical in a population with symmetric
structural groups. Structural groups are smaller than response ones when structural groups
are recursive, the structural group of person j being (j − 1, j) and the response group being
(1, . . . , j). Structural groups are larger than response ones when structural groups are partly
responsive. The former group is either J or J/j, but the latter is R.

4.5. Reinforcing structural and response-function interactions

A researcher posing an endogenous-interactions model may assume that structural functions are
monotone in their arguments. In work that builds on an earlier draft of the present paper, Lazzati
(2010) studies the implications of such assumptions for response functions. I summarize her
findings here.

Lazzati supposes that structural reference groups are symmetric. Hence, structural and
response groups are identical. She also supposes that the range space of outcomes is compact. In
this setting, she considers two forms of monotonicity of the structural functions.
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First, suppose that endogenous interactions are reinforcing. Formally, consider persons in a
symmetric structural group F. For all j ∈ F and tF ∈ TF, assume that fj(tj, tF/j, ·) weakly increases
in its final argument, yF/j(tF). Lazzati brings to bear Tarski’s fixed-point theorem to show that
the structural equations have at least one solution. If they have multiple solutions, there exist
smallest and largest solutions, whose values may depend on tF.

Next, suppose that the structural functions are monotone in own treatment and also that
exogenous interactions are reinforcing. Formally, for all j ∈ F and yF/j(tF) ∈ YF/j, assume that
fj[·, ·, yF/j(tF)] weakly increases in (tj, tF/j). Combining this monotonicity assumption with the
earlier one, she shows that the smallest and largest solutions to the structural equations are weakly
increasing functions of (tj, tF/j).

When the endogenous-interactions model is complete, these two results imply that response
functions satisfy Assumption SMTR, with tF ≥ sF ⇒ yj(tF) ≥ yj(sF) for all j ∈ F. However,
this conclusion does not necessarily hold when the model is incomplete. The potential problem
is that, when the structural equations have multiple solutions, the social mechanism at work
in the population may possibly select a smaller solution under treatment vector tF than under
sF. Recognizing this possibility, Lazzati introduces the further assumption that the mechanism
always selects either the smallest or the largest solution to the equations. Then Assumption
SMTR holds even when the endogenous-interactions model is incomplete. A caveat is that the
credibility of the further assumption may be difficult to assess in applications.

5. STATISTICAL INDEPENDENCE OF POTENTIAL OUTCOMES AND
REALIZED EFFECTIVE TREATMENTS

Assumptions CTR and SMTR restrict the shape of individual response functions, without
constraining the distribution of response across the population. Research under Assumption
ITR regularly joins shape restrictions on response functions with distributional assumptions.
Similarly, studies of models of endogenous interactions pose shape restrictions and distributional
assumptions on structural functions.

A classical union of shape restrictions and distributional assumptions combines Assumption
ITR with the assumption that potential outcomes are statistically independent of realized
treatments. The statistical independence assumption has high credibility when realized
treatments are randomly assigned. The pair of assumptions transparently yields point
identification of potential outcome distributions, provided only that realized treatments equal
potential treatments for a positive fraction of the population.

In this section I generalize the classical derivation to settings with social interactions.
I combine Assumption CTR with the assumption that potential outcomes are statistically
independent of realized effective treatments. I show that this pair of assumptions point identifies
potential outcome distributions, provided that realized effective treatments equal potential
effective treatments for positive fractions of certain subpopulations. Although the present
derivation directly generalizes the one under Assumption ITR, the finding presented here is not
as positive. The requirement that realized effective treatments equal potential effective treatments
for positive fractions of certain subpopulations regularly fails to hold when social interactions are
global in nature.

Section 5.1 presents the analysis. Section 5.2 interprets the finding. Section 5.3 draws
cautionary implications for the identifying power of random assignment.
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5.1. Analysis

As prelude, recall the classical argument. Suppose that the objective is to learn P[y(τ )] for
some τ ∈ T . One pairs Assumption ITR with the statistical-independence Assumption P[y(τ )] =
P[y(τ )|z = τ ]. Assumption ITR implies that P[y(τ )|z = τ ] = P(y|z = τ ). Observation of realized
treatments and outcomes reveals P(y|z = τ ) if and only if P(z = τ ) > 0. Hence, the assumption
that event [z = τ ] is statistically independent of y(τ ) point-identifies P[y(τ )] if and only if P(z =
τ ) > 0. If P(z = τ ) = 0, the empirical evidence and assumption are uninformative about P[y(τ )].

Now pose any version of Assumption CTR. To generalize the classical argument, I first
decompose the population into a set of distinct effective-treatment types. I will say that persons
i and j have the same type if there exists a permutation operator π ij: TJ → TJ such that ci(tJ) =
cj[π ij(tJ)] for all tJ ∈ TJ . Suppose, for example, that i and j both have reference groups of size N.
Then ci(tJ) and cj(tJ) are both subvectors of tJ of length N. A permutation of tJ transforms ci(tJ)
into cj(tJ).

To enable use of elementary probability theory, I will suppose that the population is composed
of a finite set M of types, each type having finitely many potential effective treatments. Let
Jm denote the sub-population of type m. Let Cm be the common set of effective treatments for
persons of type m.

For a given tJ and γ ∈ Cm, let Jmγ ≡ [j ∈ Jm: cj(tJ) = γ ]. In words, Jmγ is the group of persons
of type m who have effective treatment γ when the potential treatment vector is tJ . Outcomes
in groups with zero probability mass do not affect outcome distribution P[y(tJ)]. Hence, in what
follows, it suffices to consider groups with P(Jmγ ) > 0.

Now assume statistical independence (SI) of potential outcomes and realized effective
treatments. Formally, the assumption is

ASSUMPTION SI. For each group Jmγ with P(Jmγ ) > 0,

P [y(tJ )|Jmγ ] =P [y(tJ )|Jmγ ,c(zJ ) =γ ]. (5.1)

Assumption CTR implies that P[y(tJ)|Jmγ , c(zJ) = γ ] = P[y|Jmγ , c(zJ) = γ ]. Observation of
realized treatments and outcomes reveals P[y|Jmγ , c(zJ) = γ ] if and only if P[c(zJ) = γ |Jmγ ] >

0. Hence, Assumption SI point-identifies P[y(tJ)|Jmγ ] if and only if P[c(zJ) = γ |Jmγ ] > 0. If
P[c(zJ) = γ |Jmγ ] = 0, the empirical evidence and assumption are uninformative about
P[y(tJ)|Jmγ ].

It remains to aggregate across groups. The Law of Total Probability gives

P [y(tJ )] =
∑

(m∈M,γ∈Cm)

P [y(tJ )|Jmγ ] · P (Jmγ ). (5.2)

Hence, we have

PROPOSITION SI. Given Assumption SI, the identification region for P[y(tJ)] is

H {P [y(tJ )]} =
⎧⎨
⎩

∑
(m∈M,γ∈Cm:P [c(zJ ) = γ |Jmγ ]>0)

P [y|Jmγ ,c(zJ ) = γ ] · P (Jmγ )

+ δ ·
∑

(m∈M,γ∈Cm:P [c(zJ )= γ |Jmγ ]=0)

P (Jmγ ), δ ∈ �Y

⎫⎬
⎭ . (5.3)
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5.2. Identifying power

Proposition SI shows that Assumption SI point-identifies P[y(tJ)] if and only if P[c(zJ) =
γ |Jmγ ] > 0 for all m ∈ M and γ ∈ Cm such that P(Jmγ ) > 0. Thus, every relevant conjectured
effective treatment must be on the support of the distribution of realized effective treatments.
The magnitudes of the probabilities {P[c(zJ) = γ |Jmγ ], m ∈ M, γ ∈ Cm} are immaterial. All that
matters is that they be positive.

This requirement is transparent under Assumption ITR. Then everyone has the same type and
the common set of effective treatments is C = T . Let Jτ denote the sub-population who would
receive treatment τ under potential treatment vector tJ . The requirement for point identification
of P[y(tJ)] is P(z = τ |Jτ ) > 0 for all τ ∈ T such that P(Jτ ) > 0. This support condition generically
holds if realized treatments are assigned randomly with ex ante assignment probabilities
ϕ(τ ) > 0, all τ ∈ T . Then familiar arguments using laws of large numbers show that P(z =
τ |Jτ ) ∼= ϕ(τ ) for all τ such that P(Jτ ) > 0.

The support condition is considerably more subtle with treatment interactions. Suppose that
persons of type m have reference groups of size S. Then the set of effective treatments is Cm = TS

and P[c(zJ) = γ |Jmγ ] = P[zG(·) = γ |Jmγ ]. Thus, equalizing the realized and conjectured effective
treatments of one person j ∈ Jm necessitates fixing the realized treatments of all members of his
reference group G(j). For each k ∈ G(j), let D(k) ≡ [i ∈ J: k ∈ G(i)] denote the subset of J who
list k as a member of their groups. Equalizing the realized and conjectured effective treatments of
person j constrains the realized effective treatments of the entire class of persons [D(k), k ∈ G(j)].
This phenomenon can make it difficult to satisfy the support condition when reference groups
are large or when there exist persons who belong to many reference groups.

I give two illustrations below. In both cases, interactions are global in the sense that the class
of persons [D(k), k ∈ G(j)] comprises the entirety of Jm.

5.2.1. Groups with leaders and followers. Let type m consist of persons having reference
groups of size N + L. In these groups, membership is symmetric for N persons. That is, if the
group of person i contains j, then the group of j contains i. Membership is asymmetric for L
persons. These persons are in all groups but are not themselves type-m. I will call the L persons
leaders and the N persons followers.

For example, the N persons in a group may be family members, perhaps husbands and wives.
The L persons may be public figures, perhaps celebrities or opinion leaders. The treatments
received by public figures may affect the outcomes of all families. The treatments received by
family members have no impacts outside of the family.

The effective treatment of a person of type m is a subvector of tJ of length N + L. Let �(m) ⊂
J denote the leaders of type m. Let γ = (τN , τ�(m)) denote a situation in which followers receive
the N treatments τN and leaders receive the L treatments τ�(m). Then

P [c(zJ ) =γ |Jmγ ] =P [(zN, z�(m)) = (τN, τ�(m))|Jmγ ] = P (zN = τN |Jmγ ) · 1[z�(m) = τ�(m)].
(5.4)

Thus, P[c(zJ) = γ |Jmγ ] > 0 if and only if z�(m) = τ�(m) and P(zN = τN |Jmγ ) > 0. In words,
realized and potential treatments must coincide for all leaders. Moreover, they must coincide for
all followers in a positive fraction of the groups of type m.

5.2.2. Population-wide distributional interactions. Suppose that the population contains one
type of person. The common reference group is the entire population, and interactions are
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distributional. This may be a reasonable idealization of some vaccination scenarios. One may
think it credible to assume that each person’s health status varies with his own vaccination and
with the population rate of vaccination.

In this setting, cj(tJ) = [tj, Q(tJ)] and cj(zJ) = [zj, Q(zJ)] for all j ∈ J. The feasible values of
γ are the pairs [τ , Q(tJ)], τ ∈ T . Fixing τ and letting Jτ be the subpopulation who would receive
τ under potential treatment vector tJ , we have

P [c(zJ ) = γ |Jmγ ] =P {[z,Q(zJ )] = [τ ,Q(tJ )]|Jτ } = P (z = τ |Jτ ) · 1[Q(zJ ) = Q(tJ )]. (5.5)

Thus, P[c(zJ) = γ |Jmγ ] > 0 if and only if Q(zJ) = Q(tJ) and P(z = τ |Jτ ) > 0. The realized
and potential population distributions of treatments must coincide. Moreover, a positive fraction
of the persons in sub-population Jτ must receive realized treatment τ .

5.3. Random assignment of realized treatments

In research making Assumption ITR, Assumption SI is often motivated by knowledge that
realized treatments were randomly assigned to the population. Random assignment may also
motivate Assumption SI in the presence of interactions. However, in contrast to the situation
with individualistic response, random assignment may not have identifying power. The two above
illustrations demonstrate the difficulty.

Consider a random assignment process that independently assigns persons to treatments, with
ex ante probability distribution ϕ on T . Suppose that ϕ is non-degenerate, placing positive mass
on at least two elements of T . Then random assignment does not yield a determinate vector zJ of
realized treatments. Instead, it yields an ex ante probability distribution for zJ.

Consider groups with leaders and followers. We showed above that the empirical evidence
and Assumption SI can be informative about P[y(tJ)|Jmγ ] only if z�(m) = τ�(m). With random
assignment, the ex ante probability that z�(m) = t�(m) is  j ∈�(m) ϕ(tj). This probability is less
than one. Hence, random assignment yields positive ex ante probability that z�(m) �= t�(m).

Consider a population-wide distributional interaction. We showed above that the empirical
evidence and Assumption SI can be informative about P[y(tJ)|Jmγ ] only if Q(zJ) = Q(tJ). Using
random assignment, this equality occurs with ex ante probability less than one. In the limit case
of an uncountably large population, Q(zJ) = ϕ.

These negative findings do not appear in classical analysis of random assignment, which
assumes individualistic response. Nor do they appear in the scattered efforts that researchers
have made to study random assignment in settings with social interactions, such as Hudgens and
Halloran (2008). These authors, and others they cite, assume that the population partitions into
a large number of symmetric reference groups, each of finite size. Supposing that interactions
may occur within groups but not across groups, they extend the classical analysis of random
assignment. The feasibility of this extension is unsurprising, as Assumption ITR holds when the
population is defined to be a collection of groups rather than persons.

6. CONCLUSION

This paper has studied identification of potential outcome distributions when treatment response
may have social interactions. Defining a person’s treatment response to be a function of the entire
vector of treatments received by the population, I studied identification when non-parametric
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shape restrictions and distributional assumptions are placed on response functions. An early key
result was that the traditional assumption of individualistic treatment response is a polar case
within the broad class of constant treatment response (CTR) assumptions, the other pole being
unrestricted interactions. Important non-polar cases are interactions within reference groups
and anonymous interactions. I first studied identification under Assumption CTR alone. I then
strengthened this assumption to semi-monotone response. I next discussed derivation of these
assumptions from models of endogenous interactions. Finally, I combined Assumption CTR
with statistical independence of potential outcomes from realized effective treatments. Three
propositions expressed the basic results of the paper, with special cases and illustrations fleshing
them out.

I believe that these contributions provide a secure foundation for much further work. Many
treatment-response assumptions beyond CTR, SMTR and SI warrant attention. Sustained study
of the use of models of social mechanisms to derive restrictions on response functions would
also be welcome.
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