
TESTING INSTRUMENT VALIDITY FOR LATE IDENTIFICATION BASED ON
INEQUALITY MOMENT CONSTRAINTS

Martin Huber and Giovanni Mellace*

Abstract—We derive testable implications of instrument validity in just
identified treatment effect models with endogeneity and consider several
tests. The identifying assumptions of the local average treatment effect
allow us to both point identify and bound the mean potential outcomes of
the always takers under treatment and the never takers under nontreatment.
The point-identified means must lie within their respective bounds, which
provides us with four testable inequality moment constraints. Finally, we
adapt our testing framework to the identification of distributional features.
A brief simulation study and an application to labor market data are also
provided.

I. Introduction

IN many economic evaluation problems, causal inference is
complicated by endogeneity, implying that the explanatory

or treatment variable of interest is correlated with unobserved
factors that also affect the outcome. As an example, when
estimating the returns to education, the schooling choice is
plausibly influenced by unobserved ability (see Card, 1999),
which most likely has an impact on the earnings outcome.
Due to the endogenous treatment selection (also known as
selection on unobservables), the earnings effect of education
is confounded with the unobserved terms. In the presence
of endogeneity, identification relies on the availability of an
instrumental variable (IV) that generates exogenous variation
in the treatment. In heterogeneous treatment effect models
with a binary treatment (which allow for effect heterogeneity
across individuals), an instrument is valid if (a) the poten-
tial outcomes are mean independent of the instrument, (b)
the potential treatment states are not confounded by the
instrument, and (c) the treatment is weakly monotonic in the
instrument. In this case, the local average treatment effect
(LATE) on those who switch their treatment state as a reac-
tion to a change in the instrument (the so-called compliers)
is identified.1 (See Imbens & Angrist, 1994, and Angrist,
Imbens, & Rubin, 1996.)2
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1 For the identification of (local) quantile treatment effects, the mean inde-
pendence assumptions have to be strengthened to full independence of the
instrument and the joint distribution of potential treatments and potential
outcomes (see Frölich & Melly, 2008).

2 Note that under the strong restrictions of effect homogeneity and linear-
ity of the outcome equation, an instrument is valid if it is correlated with the
treatment and uncorrelated with the error term (monotonicity is imposed by
construction in this kind of models). See, for instance, the textbook discus-
sions in Peracchi (2001), Wooldridge (2002), Cameron and Trivedi (2005),

IV estimation is a cornerstone of empirical research. Tak-
ing the estimation of the returns to education as an example,
a range of instruments has been suggested to control for
the endogenous choice of schooling. Angrist and Krueger
(1991), for example, use quarter of birth, which is related to
years of education through regulations concerning the school
starting age but arguably does not have a direct effect on
income. As a second example, Card (1995) exploits geo-
graphical proximity to college (which should affect the cost
of college education) as instrument for going to college. How-
ever, most instruments are far from being undisputed because
arguments in favor of or against an instrument being valid
are predominantly discussed on theoretical and behavioral
bases, which are frequently not unanimously accepted among
researchers.3 In contrast, hypothesis tests have not played any
role in applications with just identified models.4

Kitagawa (2008; henceforth K08), provides the first for-
mal test for just identified models with a binary treatment
and instrument based on somewhat more restrictive assump-
tions than the ones outlined above: full independence of the
potential outcomes and treatment states and the instrument
instead of mean independence. His method is based on the
fact that the potential outcome distribution under treatment
of the always takers (those treated irrespective of the instru-
ment) as well as the joint distribution of the always takers
and compliers are point identified if the instrument is valid.
As Imbens and Rubin (1997) showed, the difference of both
gives to the distribution under treatment of the compliers. An
equivalent result holds for the identification of the compliers’
outcome distribution under nontreatment in the mixed pop-
ulation of compliers and never takers. Naturally, the density
of the complier outcomes under treatment and nontreatment
must not be negative, which is a testable implication already
observed by Balke and Pearl (1997, for the binary outcome
case).5 K08 therefore tests whether negative densities occur

and Greene (2008). In this case, the IV estimand can be interpreted as the
average treatment effect (ATE), given that the model is correctly specified.
Clearly, the weaker IV restrictions (uncorrelation instead of the mean inde-
pendence restrictions and no assumptions on the first stage) are bought by
stronger structural assumptions. Then IV validity cannot be tested in just
identified models. In the subsequent discussion, we focus on heterogeneous
treatment effect models and show that the LATE assumptions have testable
implications for IV validity.

3 See Bound, Jaeger, and Baker (1995), who contest the validity of quarter
of birth instruments and present evidence on seasonal patterns of births
that are related to family income, physical and mental health, and school
attendance rates (factors that may be correlated with potential wages).

4 IV tests are, however, available for overidentified models where the
number of instruments exceeds the number of endogenous regressors (see
Sargan, 1958).

5 Also Heckman and Vytlacil (2005) derive a testable constraint (under
possibly continuous instruments and outcomes) in their appendix A that
is equivalent to the nonnegativity of complier densities under discrete
instruments.
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in subsets of the outcome distribution and uses a bootstrap
method for inference.6

The first contribution of this paper is the proposition of an
alternative testing approach that is based on mean potential
outcomes rather than densities. In the case of a binary instru-
ment, the underlying intuition is as follows. If an instrument
is valid (i.e., satisfies conditions a to c outlined in the first
paragraph), the mean potential outcome of the always takers
under treatment is point identified. It simply corresponds to
the observed mean outcome in the treated subpopulation that
does not receive the instrument. For the same potential out-
come, one can derive upper and lower bounds in the treated
subpopulation receiving the instrument, where the width of
the bounds depends of the relative shares of compliers and
always takers. Clearly the point-identified mean outcome in
the absence of the instrument must lie within the parameter
bounds in the presence of the instrument.

If this constraint is violated, the instrument is either con-
founded, or it has a direct effect on the mean potential
outcome of the always takers, or the treatment is not mono-
tonic in the instrument, or several problems occur at the same
time. An equivalent result holds for the never takers (those
never treated irrespective of the instrument) by considering
the outcomes of the nontreated receiving the instrument and
the nontreated not receiving the instrument. Therefore, the
LATE framework provides us with four testable inequality
moment constraints based on point identifying and bound-
ing the mean potential outcomes of the always takers under
treatment and of the never takers under nontreatment. For
testing these constraints, we consider three different meth-
ods: a simple bootstrap test with Bonferroni adjustment, the
minimum p-value test of Bennett (2009), and the smoothed
indicator-based method of Chen and Szroeter (2012). As in
K08, we test for necessary, albeit not sufficient, conditions
for IV validity. The latter requires the mean potential out-
comes of the always/never takers to be equal across different
instrument states. However, only the inequality moment con-
straints are testable rather than equality of means. For this
reason, more violations of IV validity may be detected as
the bounds shrink or, put differently, as the compliers’ share
becomes relatively smaller to the fractions of always takers
and never takers, respectively.

We therefore also demonstrate how the width of the bounds
can be tightened further to increase testing power (in the
sense of finding more violations of the IV assumptions) by
imposing dominance of the mean potential outcome of one
population over another (see also Huber & Mellace, 2010,
and Zhang & Rubin, 2003). Testing power is maximized if
equality in mean potential outcomes is assumed. Then the
bounds collapse to a point and the inequality constraints turn
into equality constraints. For example, given that the mean
potential outcomes of the always takers and compliers are

6 In contrast to K08, Angrist and Imbens (1995) consider a multivalued
treatment and discuss a different testable implication: One conditional dis-
tribution of the treatment given the instrument has to stochastically dominate
the other.

equal, IV validity implies that the mean outcome of the
treated receiving the instrument is equal to that of the treated
not receiving the instrument. This can be easily tested by
difference-of-means tests. An analogous result holds for the
never takers and the compliers under nontreatment.

Finally, we extend our testing approach to potential
outcome distributions rather than potential means, which
requires joint independence of the instrument and the poten-
tial treatments and outcomes. Starting with the upper bounds
on the potential outcome distributions of the always takers
under treatment and the never takers under nontreatment, we
derive constraints that are equivalent to K08: that complier
densities must not be negative in the mixed populations with
compliers and always or never takers. Also the lower bounds
provide two testable restrictions saying that under the null, the
joint probability of being a complier and having an outcome
that falls into a subset of the support must never be larger than
the (unconditional) complier share in the population.7 Similar
to the tests based on mean independence, we also demonstrate
how testing power can be further increased by imposing sto-
chastic dominance or equality assumptions on the potential
outcome distributions of different subpopulations.

The remainder of the paper is organized as follows. Section
II discusses the IV assumptions in the LATE framework and
the testable implications. Section III proposes tests based on
moment inequality constraints. Section IV shows how mean
dominance and equality restrictions can be used (on top of
the standard assumptions) to detect more violations of IV
validity. A generalization of the testable implications derived
for the binary instrument case to discrete instruments with
multiple values is provided in section V. Section VI discusses
testing under the stronger joint independence assumption.
Simulation results are presented in section VII. In section
VIII, we apply our methods to labor market data from Card
(1995). Section IX concludes.

II. IV Assumptions and Testable Implications

Suppose that we are interested in the average effect of a
binary and endogenous treatment D ∈ {1, 0} (e.g., participa-
tion in a training) on an outcome Y (e.g., earnings) evaluated
at some point after the treatment. Under endogeneity, the
effect of D is confounded with some unobserved term U that
is correlated with both the treatment and the outcome. There-
fore, identification of treatment effects requires an instrument
(Z) that shifts the treatment but does not have a direct effect on
the mean outcome (i.e., any mean impact other than through
the treatment). Denote by Dz the potential treatment state
for Z = z and by Y d,z the potential outcome for treatment
D = d and Z = z (see Rubin, 1974, for a discussion of
the potential outcome notation). In heterogeneous treatment

7 Note, however, that the latter restrictions are redundant if nonoverlapping
subsets of the outcome distribution that jointly cover the entire outcome
support are used for testing as in K08. Then they are implicitly accounted
for by the nonnegative complier density constraints of K08 and Balke and
Pearl (1997).
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Table 1.—Types

Type T D1 D0 Notion

a 1 1 Always takers
c 1 0 Compliers
d 0 1 Defiers
n 0 0 Never takers

Table 2.—Observed Probabilities and Type Proportions

Conditional Treatment Probability Type Proportions

P1|1 ≡ Pr(D = 1|Z = 1) πa + πc

P0|1 ≡ Pr(D = 0|Z = 1) πd + πn

P1|0 ≡ Pr(D = 1|Z = 0) πa + πd

P0|0 ≡ Pr(D = 0|Z = 0) πc + πn

effect models, the observed outcome of some individual i can
be written as Yi = ϕ(Di, Zi, Ui), where ϕ denotes a general
function that might be unknown to the researcher. Likewise,
the potential outcome is the value individual i would receive if
the treatment and the instrument were set to particular states,
Y d,z

i = ϕ(d, z, Ui).
For expositional ease, we henceforth assume the instru-

ment to be binary (Z ∈ {0, 1}); section V will generalize the
results to bounded nonbinary instruments. As discussed in
Angrist et al. (1996), the population can then be categorized
into four types (denoted by T ), according to the treatment
behavior as a function of the binary instrument. The compli-
ers react on the instrument in the intended way by taking the
treatment when Z = 1 and abstaining from it when Z = 0. For
the remaining three types Dz �= z for either Z = 1 or Z = 0
or both: the always takers are always treated irrespective of
the instrument state, the never takers are never treated, and
the defiers take the treatment only when Z = 0 (see table 1).

We cannot directly infer the type of any individual as
either D1 or D0 is observed but never both. Without further
assumptions, neither the share of the different types nor their
mean potential outcomes are identified. We therefore impose
the following unconfounded type assumption, which implies
that the instrument is assigned independent of the potential
treatment states:

Assumption 1. Pr(T = t|Z = 1) = Pr(T = t|Z = 0) for t
∈ {a, c, d, n} (unconfounded type).

Under assumption 1, the share of any type conditional on
the instrument is equal to its unconditional proportion in the
entire population. Let πt ≡ Pr(T = t), t ∈ {a, c, n}, rep-
resent the (unobserved) probability to belong to type T in
the population and denote by Pd|z ≡ Pr(D = d|Z = z) the
(observed) conditional treatment probability given the instru-
ment. Assumption 1 implies that any of the four conditional
treatment probabilities is a combination of two unobserved
type proportions (see table 2).

Similarly, each of the four observed conditional means
E(Y |D = d, Z = z) is a mixture or weighted average of
the mean potential outcomes of two types conditional on the
instrument (denoted by E(Y d,z|T = t, Z = z)), where the
weights depend on the relative proportions:

E(Y |D = 1, Z = 1) = πa

πa + πc
· E(Y 1,1|T = a, Z = 1)

+ πc

πa + πc
· E(Y 1,1|T = c, Z = 1),

(1)

E(Y |D = 1, Z = 0) = πa

πa + πd
· E(Y 1,0|T = a, Z = 0)

+ πd

πa + πd
· E(Y 1,0|T = d, Z = 0),

(2)

E(Y |D = 0, Z = 0) = πc

πn + πc
· E(Y 0,0|T = c, Z = 0)

+ πn

πn + πc
· E(Y 0,0|T = n, Z = 0),

(3)

E(Y |D = 0, Z = 1) = πd

πn + πd
· E(Y 0,1|T = d, Z = 1)

+ πn

πn + πd
· E(Y 0,1|T = n, Z = 1).

(4)

From table 2 and expressions (1) to (4), it becomes obvious
that further assumptions are necessary to identify the LATE.
Our second assumption is a mean exclusion restriction, which
requires that the instrument does not exhibit an effect on the
mean potential outcomes within any subpopulation (however,
it may affect higher moments):

Assumption 2. E(Y d,1|T = t, Z = 1) = E(Y d,0|T =
t, Z = 0) = E(Y d |T = t) for d ∈ {0, 1} and t ∈ {a, c, d, n}
(mean exclusion restriction),

where the last equality makes explicit that the mean potential
outcomes are not a function of the instrument.

It follows that

E(Y 1,1|T = a, Z = 1) = E(Y 1,0|T = a, Z = 0)

= E(Y 1|T = a)

and

E(Y 0,1|T = n, Z = 1) = E(Y 0,0|T = n, Z = 0)

= E(Y 0|T = n),

which provides the base for the testable implications outlined
further below. Alternatively to assumptions 1 and 2, one may
assume that they hold conditional only on a vector of observed
variables X as considered in Frölich (2007), who shows non-
parametric identification of the LATE in the presence of a
conditionally valid instrument (given X). In the subsequent
discussion, conditioning on X will be kept implicit, such that
all results refer to either a supposedly unconditionally valid
instrument or an analysis within cells of X.

The final two assumptions required for LATE identification
put restrictions on the (non)existence of particular types.

Assumption 3. Pr(D1 ≥ D0) = 1 (monotonicity).

Assumption 4. Pr(D1 > D0) > 0 (existence of compliers).
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Assumption 3 states that the potential treatment state of
any individual does not decrease in the instrument. This rules
out the existence of defiers (type d). We shall refer to Z as a
valid instrument if it satisfies assumptions 1 to 3. However,
LATE identification in addition requires Z to be a relevant
instrument in the sense that the treatment states of (at least)
some individuals react to a switch in the instrument. This is
implied by assumption 4, which postulates the existence of
compliers.

As defiers do not exist, the proportions of the remaining
types are identified by P0|1 = πn, P1|0 = πa, P1|1 − P1|0 =
P0|0 − P0|1 = πc. Furthermore, the mean potential outcomes
of the always takers under treatment and the never takers
under nontreatment are point identified. Expression (2) sim-
plifies to E(Y |D = 1, Z = 0) = E(Y 1|T = a) under
assumptions 1 to 3, and expression (4) becomes E(Y |D =
0, Z = 1) = E(Y 0|T = n). Plugging E(Y |D = 1, Z = 0)

and E(Y |D = 0, Z = 1) into expressions (1) and (3) allows
solving the equations for the mean potential outcomes of the
compliers under treatment and nontreatment.8 The difference
of the latter gives the LATE and simplifies to the well-known
probability limit of the Wald estimator, which corresponds to
the intention-to-treat effect divided by the share of compli-
ers (see Imbens & Angrist, 1994, and Angrist et al., 1996):
E(Y 1 − Y 0|T = c) = E(Y |Z=1)−E(Y |Z=0)

E(D|Z=1)−E(D|Z=0)
.

Assumptions 1 to 4 not only identify the LATE and the
mean potential outcomes of the compliers; they also pro-
vide testable implications for IV validity based on deriving
bounds on the mean potential outcomes of the always tak-
ers and never takers in equations (1) and (3), respectively.
In fact, the mean potential outcome of the always takers
in equation (1) is bounded by the mean over the upper and
lower proportion of outcomes that corresponds to the share
of the always takers in this mixed population. It is obvi-
ous that E(Y |D = 1, Z = 0) = E(Y 1|T = a) must lie
within these bounds; otherwise, either Z has a direct effect
on the mean of Y , or the instrument is confounded, or defiers
exist in equation (2), or any combination of these violations
occurs. An equivalent result applies to the never takers under
nontreatment.

To formalize the discussion, we introduce some further
notation and assume for the moment that the outcome is
continuous, while online appendix A.4 shows how the fol-
lowing intuition and the tests discussed in the next section
can be adapted to discrete outcomes. Define the qth condi-
tional quantile of the outcome yq ≡ G−1(q), with G being
the cdf of Y given Z = 1 and D = 1. Furthermore, let q cor-
respond to the proportion of always takers in equation (1):
q = πa

πa+πc
= P1|0

P1|1 . By the results of Horowitz and Manski
(1995) (see also the discussion in Huber & Mellace, 2010),
E(Y |D = 1, Z = 1, Y ≤ yq) is the sharp lower bound of
the mean potential outcome of the always takers, implying

8 An equivalent result for the potential outcome distributions of the com-
pliers under slightly stronger assumptions has been derived by Imbens and
Rubin (1997).

that all of the always takers are concentrated in the lower
tail of the distribution that corresponds to their proportion.
Similarly, E(Y |D = 1, Z = 1, Y ≥ y1−q) is the upper bound
by assuming that any always taker occupies a higher rank in
the outcome distribution than any complier. Therefore, the
IV assumptions imply that

E(Y |D = 1, Z = 1, Y ≤ yq) ≤ E(Y |D = 1, Z = 0)

≤ E(Y |D = 1, Z = 1, Y ≥ y1−q). (5)

Equivalent arguments hold for the mixed-outcome equa-
tion of never takers and compliers. Let yr ≡ F−1(r), with
F being the cdf of Y given D = 0, Z = 0 and r =

πn
πn+πc

= P0|1
P0|0 , that is, the proportion of never takers in equa-

tion (3). Taking the mean over the lower and upper share
of the outcome distribution corresponding to r, we obtain
the lower and upper bounds E(Y |D = 0, Z = 0, Y ≤ yr),
E(Y |D = 0, Z = 0, Y ≥ y1−r) on the mean potential out-
come of the never takers. The latter is also point-identified
by E(Y |D = 0, Z = 1) = E(Y 0|T = n), such that the IV
assumptions require that

E(Y |D = 0, Z = 0, Y ≤ yr) ≤ E(Y |D = 0, Z = 1)

≤ E(Y |D = 0, Z = 0, Y ≥ y1−r). (6)

Note that under one-sided noncompliance, only one of equa-
tions (5) and (6) can be tested. Furthermore, monotonicity
holds by construction in this case such that a violation of
the remaining testable constraint points to a nonsatisfaction
of the exclusion restriction. For example, when there are no
observations with Z = 0 and D = 1, always takers do not
exist (πa = 0) and E(Y |D = 1, Z = 0) is not defined. In
addition, the latter case also rules out the existence of defiers.
Therefore, monotonicity is satisfied, but equation (6) is still
useful to test the exclusion restriction on the never takers.

III. Testing

Expressions (5) and (6) provide us with four testable
inequality moment constraints.9 Under IV validity it must
hold that

H0 :

⎛
⎜⎜⎜⎜⎝

E(Y |D = 1, Z = 1, Y ≤ yq) − E(Y |D = 1, Z = 0)

E(Y |D = 1, Z = 0) − E(Y |D = 1, Z = 1, Y ≥ y1−q)

E(Y |D = 0, Z = 0, Y ≤ yr) − E(Y |D = 0, Z = 1)

E(Y |D = 0, Z = 1) − E(Y |D = 0, Z = 0, Y ≥ y1−r)

⎞
⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎝

θ1

θ2

θ3

θ4

⎞
⎟⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎟⎠ . (7)

9 Note that expressions (5) and (6) hold under assumptions 1 to 3 alone;
the existence of compliers (assumption 4) is not required. In principle, one
could therefore test for IV validity even if the LATE is not identified, which
might, however, not be an interesting exercise in applied work.
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Under a violation of IV validity, at least one and at most
two constraints might be binding. This is the case because
violations of the first and second, as well as of the third
and fourth, constraints are mutually exclusive, respectively.
Furthermore, note that even if no inequality constraint is vio-
lated, IV validity may not be satisfied: that is, we detect
violations only if they are large enough such that the point-
identified mean outcomes of the always takers or never takers,
or both, lie outside their respective bounds in the mixed pop-
ulations. Ideally, we would like to test for the equality of the
mean outcomes of the respective population across instru-
ment states. However, this is not feasible because it remains
unknown which individuals in the mixed populations belong
to the group of always or never takers or compliers. There-
fore, without further assumptions, testing based on inequality
moment constraints is the best one can get. It is obvious that
the tests can asymptotically reject more violations of IV valid-
ity as compliers’ share decreases, because the bounds on the
mean outcomes of the always and never takers become tighter.

We test equation (7) using three different methods: a sim-
ple bootstrap test with Bonferroni adjustment, the minimum
p-value test of Bennett (2009), and the smoothed indicator-
based method of Chen and Szroeter (2012). Note that the
parameters involved in θ can be estimated in a standard GMM
framework as described in online appendix A.1, which satis-
fies the regularity conditions required for bootstrapping (see
Horowitz, 2001), as well as those in assumption 1 of Bennett
(2009). Our testing problem also meets the regularity condi-
tions D1, D3, and D4 in Chen and Szroeter (2012), whereas
D2 needs to be verified, as outlined in their appendix C.

Starting with the bootstrap test with Bonferroni adjust-
ment, let θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4)

T denote the vector of estimates
of the respective population parameters θ based on an i.i.d.
sample containing n observations. Furthermore, denote by
θ̂b = (θ̂1,bθ̂2,b, θ̂3,b, θ̂4,b)

T (b ∈ {1, 2, ..., B}, where B is the
number of bootstrap replications) the estimates in a particular
bootstrap sample b containing n observations that are ran-
domly drawn from the original data with replacement. In each
bootstrap sample, the recentered parameter vector θ̃b = θ̂b−θ̂
is computed. The vector of p-values Pθ̂ is estimated as the
share of bootstrap replications in which studentized versions
of the recentered parameters are larger than the studentized
estimates in the original sample: Pθ̂ = B−1 ∑B

b=1 I
{

θ̃b
σ̂

> θ̂
σ̂

}
,

where I{·} denotes the indicator function and σ̂ is an estimate
of the standard error of θ̂. Although these p-values are consis-
tent for assessing each constraint separately, we are interested
in the joint satisfaction of these constraints. One approach
to test the latter is to use a Bonferroni adjustment (see Mac-
Kinnon, 2007) by which one multiplies the minimum p-value
by the number of constraints—in our case, four. Therefore,
the p-value of a bootstrap test with Bonferroni adjustment,
denoted by p̂bs, is p̂bs = 4 × min(Pθ̂).

A disadvantage of the Bonferroni adjustment is that
testing power decreases as the number of nonbinding con-
straints increases, because min(Pθ̂) is not affected by adding
irrelevant constraints, but it will be multiplied by a larger
number. To increase finite sample power, several studies

suggest computing critical test values and p-values as a func-
tion of the estimated binding constraints in the data (Andrews
& Jia, 2008; Andrews & Soares, 2010; Bennett, 2009; Chen
& Szroeter, 2012; Hansen, 2005; Donald & Hsu, 2011).10

We therefore also consider the Bennett (2009) test, which
is invariant to studentization and based on approximating
the distribution of the minimum p-value min(Pθ̂). This is
obtained by two sequential bootstraps (where the second
resamples from the distribution of the first bootstrap) that
are computationally inexpensive compared to using the dou-
ble (i.e., nested) bootstrap (see Beran, 1988), as suggested
in Godfrey (2005). For computing critical values, Bennett
(2009) considers both full recentering of all inequality con-
straints (henceforth B.f) and partial recentering (henceforth
B.p) of only the constraints that are (close to being) binding
in the data in order to increase power. The test algorithm can
be sketched as follows:

1. Estimate the vector of parameters θ̂ in the original
sample.

2. Draw B1 bootstrap samples of size n from the original
sample.

3. In each bootstrap sample, compute the fully recentered
vector θ̃

f
b ≡ θ̂b − θ̂ and the partially recentered vector

θ̃
p
b ≡ θ̂b − max(θ̂, −δn × σ̂), where δn is a sequence

such that δn → 0 and
√

n × δn → ∞ as n → ∞.11

4. Estimate the vector of p-values under full recentering,
denoted by

Pθ̃ f : Pθ̃ f = B−1
1 ×

B1∑
b=1

I{√n × θ̃
f
b >

√
n × θ̂}.

5. Compute the minimum p-values under full recentering:
p̂f = min(Pθ̃ f ).

6. Draw B2 values from the distributions of θ̃
f
b and θ̃

p
b . We

denote by θ̃
f
b2

and θ̃
p
b2

the resampled observations in the
second bootstrap.

7. In each bootstrap sample, compute the minimum p-
values of B.f and B.p, denoted by p̂f ,b2 and p̂p,b2 : p̂f ,b2 =
min(Pθ̃ f ,b2

), p̂p,b2 = min(Pθ̃ p,b2
), where

Pθ̃ f ,b2
= B−1

1 ×
B1∑

b=1

I{√n × θ̃
f
b >

√
n × θ̃

f
b2

},

Pθ̃ p,b2
= B−1

1 ×
B1∑

b=1

I{√n × θ̃
f
b >

√
n × θ̃

p
b2

}.

10 Further contributions to the fast-evolving literature on inference in mod-
els with moment inequalities include Andrews and Guggenberger (2007),
Chernozhukov, Hong, and Tamer (2007), Fan and Park (2007), Guggen-
berger, Hahn, and Kim (2008), Linton, Song, and Whang (2008), and Rosen
(2008).

11 As in Bennett (2009) and Chen and Szroeter (2012), we set δn =√
2×ln(ln(n))

n in the simulations and applications further below, which has
also been considered in Andrews and Soares (2010) and Chernozhukov
et al. (2007). It is, however, not guaranteed that this choice is optimal; see,
the discussion in Donald and Hsu (2011).
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8. Compute the p-values of the B.f and B.p tests by
the share of bootstrapped minimum p-values that are
smaller than the respective minimum p-value of the
original sample:

p̂B.f = B−1
2 ×

B2∑
b2=1

I{p̂f ,b2 ≤ p̂f },

p̂B.p = B−1
2 ×

B2∑
b2=1

I{p̂p,b2 ≤ p̂f }.

Finally, we consider the Chen and Szroeter (2012) test,
which again estimates the binding constraints in the data
to increase power. A particularity is that (in the spirit of
Horowitz, 1992) the method is based on indicator smooth-
ing (of the functions indicating whether the constraints are
binding) at the origin of the elements in θ, where the distri-
bution of the test statistic is discontinuous. After smoothing,
standard asymptotic theory applies to the test statistic, such
that bootstrapping is not required to approximate its (other-
wise unknown) distribution. Furthermore, Chen and Szroeter
(2012) show that their test has correct asymptotic size in the
uniform sense under certain conditions,12 which is a desirable
property given that the test statistic’s asymptotic distribu-
tion is discontinuous with regard to the number of binding
constraints. For smoothing based on the standard normal dis-
tribution (which in the simulations of section VII was most
powerful among the choices offered in Chen and Szroeter,
2012), the test algorithm is as follows:

1. Estimate the vector of parameters θ̂ and the asymptotic
variance Ĵ of

√
n × (θ̂ − θ).

2. Let η̂i = 1/
√

Ĵi, i = 1, . . . , 4, where Ĵi is the ith
element of the main diagonal of Ĵ , and compute the
smoothing function Ψ̂i(δ

−1
n × η̂i × θ̂i) = Φ(δ−1

n × η̂i ×
θ̂i), where Φ is the standard normal cdf and the tun-
ing parameter δn is chosen in the same way as for the
Bennett (2009) test.

3. Compute the approximation term Λ̂i = φ(δ−1
n × η̂i ×

θ̂i) × 1
δn×√

n
, i = 1, . . . , 4, with φ being the standard

normal pdf.
4. Define the vectors

Ψ̂ = (
Ψ̂1(δ

−1
n × η̂1 × θ̂1), . . . , Ψ̂4(δ

−1
n × η̂4 × θ̂4)

)T
,

Λ̂ = (
Λ̂1, . . . , Λ̂4

)T
, ι4 = (1, 1, 1, 1)T ,

Δ̂ = diag(Ĵ1, . . . , Ĵ4).

5. Let Q̂1 = √
(n)×Ψ̂T Δ̂θ̂−ιT

4 Λ̂ and Q̂2 =
√

Ψ̂T Δ̂ĴΔ̂Ψ̂.

12 As discussed in Chen and Szroeter (2012), a sufficient condition for
correct asymptotic size in the uniform sense is that the first four moments
exist for each of the i.i.d. data points used to estimate θ̂.

6. Compute the p-value of the Chen and Szroeter (2012)
test as

p̂CS =
{

1 − Φ
(

Q̂1
Q̂2

)
if Q̂2 > 0

1 if Q̂2 = 0.

IV. Mean Dominance and Equality Constraints

This section discusses restrictions on the order of the mean
potential outcomes of different populations, which were, for
instance, also considered by Huber and Mellace (2010) in
an IV context and Zhang and Rubin (2003) in models with
censored outcomes. If these mean dominance assumptions
appear plausible to the researcher, their use allows tightening
the bounds on the mean potential outcomes of the always or
never takers and therefore detecting more violations of IV
validity.

The first assumption considered is mean dominance of the
complier outcomes over those of the always takers under
treatment:

Assumption 5. E(Y 1|T = c) ≥ E(Y 1|T = a) (mean
dominance of compliers).

Assumption 5 implies that the mean potential outcome of
the compliers under treatment is at least as high as that of
the always takers. Therefore, the upper bound of the mean
potential outcome of the always takers in equation (1) tight-
ens to the conditional mean E(Y |D = 1, Z = 1). Under
assumptions 1 to 5, equation (5) becomes

E(Y |D = 1, Z = 1, Y ≤ yq) ≤ E(Y |D = 1, Z = 0)

≤ E(Y |D = 1, Z = 1), (8)

which tightens the upper bound. Whether this assumption is
plausible depends on the empirical application at hand and
has to be justified by theory or empirical evidence. In fact,
one could also assume the converse: that the mean potential
outcome of the compliers cannot be higher than that of the
always takers. This is formally stated in assumption 6:

Assumption 6. E(Y 1|T = c) ≤ E(Y 1|T = a) (mean
dominance of always takers).

In this case, E(Y |D = 1, Z = 1) constitutes the lower bound
of the mean potential outcome of the always takers, and the
testable implication becomes

E(Y |D = 1, Z = 1) ≤ E(Y |D = 1, Z = 0)

≤ E(Y |D = 1, Z = 1, Y ≥ y1−q). (9)

Finally, the combination of assumptions 5 and 6 results
in the restriction that the mean potential outcomes under
treatment of the always takers and compliers are the same,
yielding the following equality constraint:

Assumption 7. E(Y 1|T = c) = E(Y 1|T = a) (equality
of means).
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Clearly, assumption 7 is most powerful in finding violations
of IV validity and implies that

E(Y |D = 1, Z = 1) = E(Y |D = 1, Z = 0), (10)

such that the inequality restrictions turn into an equality con-
straint. Then the validity of the instrument can be tested by a
simple two sample t-test for differences between means. To
be precise, the latter tests the IV assumptions and assumption
7 jointly: a nonrejection points to both a valid instrument and
homogeneity of the mean potential outcomes of always takers
and compliers under treatment. Note that equivalent results
under mean dominance or equality apply to the compliers
and never takers under nontreatment. For example, assuming
E(Y 0|T = c) = E(Y 0|T = n) amounts to testing whether

E(Y |D = 0, Z = 1) = E(Y |D = 0, Z = 0). (11)

V. Multivalued Discrete Instruments

This section generalizes the testable implications under
mean independence, which were derived for binary instru-
ments, to the case of discrete instruments with multiple
values. Frölich (2007) shows that if Z has a bounded sup-
port such that Z ∈ [zmin, zmax], it is possible to define and
identify LATEs with respect to any distinct values or sub-
sets in the support of Z . Let z′, z′′ denote two different mass
points in the support of Z satisfying zmin ≤ z′ < z′′ ≤ zmax.
Note that the definition and share of the complier population
and all other types depend on the choice of z′, z′′, because
in general, the pool of individuals whose treatment states
respond to the instrument varies with the IV values con-
sidered. For example, assuming an instrument Z ∈ {0, 1, 2},
setting z′ = 0, z′′ = 1 generally yields a different proportion
and population (in terms of unobservables) of compliers than
considering z′ = 0, z′′ = 2.13 For this reason, we define the
types as functions of z′, z′′: T = T(z′, z′′) (with T = T(0, 1)

in the binary case).
Instead of assumptions 1 to 4, we now invoke assumptions

1NB to 4NB for zmin ≤ z′ < z′′ ≤ zmax:

Assumption 1NB. Pr(T(z′, z′′) = t|Z = z) =
Pr(T(z′, z′′) = t) ∀ z in the support of Z and t ∈ {a, c, d, n}
(unconfounded type).

Assumption 2NB. E(Y d,z|T(z′, z′′) = t) = E(Y d |T(z′, z′′) =
t) ∀ z in the support of Z , d ∈ {0, 1}, and t ∈ {a, c, d, n}
(mean exclusion restriction).

Assumption 3NB. Pr(Dz′′ ≥ Dz′
) = 1 (monotonicity).

Assumption 4NB. Pr(Dz′′
> Dz′

) > 0 (existence of comp-
liers).

Then the LATE among compliers (T(z′, z′′) = c) is identified
by E(Y 1 − Y 0|T(z′, z′′) = c) = E(Y |Z=z′′)−E(Y |Z=z′)

E(D|Z=z′′)−E(D|Z=z′) .

13 This is the case because compliers under z′ = 0, z′′ = 2 are those
individuals with D0 = 0 and D2 = 1 and may also include some individuals
who would be never takers if considering z′ = 0, z′′ = 1 (D0 = 0 and
D1 = 0).

Theorem 8 in Frölich (2007) shows that the LATE on the
largest complier population possible is identified by choosing
z′ = zmin and z′′ = zmax. Therefore, if assumption 4NB is not
satisfied for zmin, zmax (such that the largest share of compliers
possible is 0), it cannot hold for any other pair z′, z′′ either.
But, if assumption 4NB holds for z′ = zmin and z′′ = zmax,
this does not automatically mean that it also holds for all
or any other z′, z′′. As monotonicity of the binary treatment
implies that each individual switches its treatment status as
a reaction to the instrument at most once under the null, the
complier share may be small or even 0 for some pairs z, z′.
While small or 0 complier shares are undesirable for LATE
estimation, the contrary holds for testing, as the absence of
compliers maximizes the asymptotic power to find violations
of IV validity.

To generalize the testable implications to the case of dis-
crete instruments with multiple values, we somewhat redefine
z′, z′′. The latter may now either refer to particular mass points
of Z as before (e.g., z′ = 0 and z′′ = 1) or, alternatively, to
nonoverlapping subsets of the support of Z that satisfy the
restriction that the largest value in z′ is strictly smaller than the
smallest in z′′ (e.g., z′ = {0, 1} and z′′ = {2, 3}). Furthermore,
define Z̃ as

Z̃ =
{

0 if Z ∈ z′

1 if Z ∈ z′′ . (12)

Under assumptions 1NB to 4NB, the results of sections II
and III must also hold when replacing Z by Z̃ . This implies
that for any Z̃ , we obtain four inequality constraints:⎛

⎜⎜⎜⎜⎝
E(Y |Z̃ = 1, D = 1, Y ≤ yq) − E(Y |Z̃ = 0, D = 1),

E(Y |Z̃ = 0, D = 1) − E(Y |Z̃ = 1, D = 1, Y ≥ y1−q),

E(Y |Z̃ = 0, D = 0, Y ≤ yr) − E(Y |Z̃ = 1, D = 0),

E(Y |Z̃ = 1, D = 0) − E(Y |Z̃ = 0, D = 0, Y ≥ y1−r)

⎞
⎟⎟⎟⎟⎠

≤ 0. (13)

Let nZ̃ be the number of possible choices of Z̃ with neigh-
boring mass points or nonoverlapping subsets of the support
of Z . Testing IV validity amounts to applying the test proce-
dures outlined in section III, where the number of inequality
constraints is now 4 × nZ̃ instead of 4. To give an example,
consider the case that Z may take the values 0, 1, or 2. The
number of possible definitions of Z̃ with neighboring z′, z′′
is 4:

z′ = 0 z′′ = 1,

z′ = 1 z′′ = 2,

z′ = 0 z′′ = {1, 2},
z′ = {0, 1} z′′ = 2.

This implies that we have 4 × 4 = 16 testable inequal-
ity constraints based on neighboring pairs. Notice that also
considering the nonneighboring pair z′ = 0, z′′ = 2 does
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not increase finite sample power or asymptotic power: a
test base on the nonneighboring pair is weakly dominated
by using z′ = {0, 1}, z′′ = 2 and z′ = 0, z′′ = {1, 2} in
terms of the sample size (and, thus, finite sample power) and
entails a weakly higher complier share than any other neigh-
boring pair (and, thus, weakly lower asymptotic power). In
large samples, defining the neighboring z′, z′′ as mass points
or, rather, small subsets of the support appears preferable
because this increases asymptotic power by minimizing the
complier share in each pair and maximizing the number of
pairs to be tested. However, in small samples, we face a trade-
off between asymptotic power and finite sample power due to
few observations per pair when defining z′, z′′ as mass points
or small subsets.

VI. Testing Under Joint Independence

Even though stronger than necessary for LATE identifi-
cation, the literature commonly imposes the following joint
independence assumption instead of assumptions 1 and 2 (see
Imbens & Angrist, 1994):

Assumption 1J. Y d,z = Y d and Z⊥(Y d , Dz) ∀ d ∈ {0, 1} and
z in the support of Z (joint independence), where ⊥ denotes
statistical independence.

Assumption 1J states that the potential outcome is a function
of treatment but not of the instrument (such that the exclusion
restriction holds for any moment) and that the instrument is
independent of the joint distribution of the potential treat-
ment states and the potential outcomes. It is sufficient for the
identification of local quantile treatment effects (see Frölich
& Melly, 2008) or other distributional features.

One plausible reason for the popularity of this assumption
in LATE estimation is that in many empirical setups, it does
not seem too unlikely that when mean independence holds,
the stronger joint independence is also satisfied. For example,
if one is willing to assume that an instrument is mean inde-
pendent of the outcome variable hourly wage it might appear
reasonable to assume that it is mean independent of the log
of hourly wage, too. As the latter is a (one-to-one) nonlin-
ear transformation of the original outcome variable, this also
implies independence with regard to higher moments. From
this perspective, strengthening mean independence to joint
independence may often only come with few costs in terms
of credibility.14 The subsequent review of the K08 test and
the adaptation of our method to joint independence make
it obvious that assumption 1J allows constructing asymp-
totically more powerful tests based on probability measures
(such as density functions) rather than means only. However,
it is not yet clear how to optimally define these probability
measures in finite samples. From a practical point of view,
the mean-based tests may therefore appear useful even under
joint independence due to their ease of implementation.

14 We thank Toru Kitagawa for a fruitful discussion on this topic.

Henceforth assuming a binary instrument, the testing
approach proposed in K08 exploits the fact that under IV
validity (now relying on assumption 1J instead of assump-
tions 1 and 2) and for any subset V of the support of Y ,
Pr(Y ∈ V , D = d|Z = d) − Pr(Y ∈ V , D = d|Z = 1 − d)

can be shown to be equal to Pr(Y ∈ V |D = d)×πc, and thus
cannot be negative for d ∈ {0, 1}. The underlying intuition is
that negative densities of complier outcomes must not occur
in either treatment state (see section I). This is formally stated
in proposition 1 of K08:15

Pr(Y ∈ V , D = 1|Z = 0) ≤ Pr(Y ∈ V , D = 1|Z = 1),
(14)

Pr(Y ∈ V , D = 0|Z = 1) ≤ Pr(Y ∈ V , D = 0|Z = 0)

∀ V in the support of Y .

For testing, K08 makes use of a two-sample Kolmogorov-
Smirnov-type statistic on the supremum of Pr(Y ∈ V , D =
1|Z = 0) − Pr(Y ∈ V , D = 1|Z = 1) and Pr(Y ∈ V , D =
0|Z = 1) − Pr(Y ∈ V , D = 0|Z = 0), respectively, across
a predefined collection of subsets V , henceforth denoted as
V . Because the test statistic does not converge to any known
distribution, the author proposes a bootstrap (or permutation)
method, analogous to Abadie (2002), to compute critical val-
ues. An open question of the K08 test is the choice of V—the
definition and number of subsets V . While a large number
of subsets increases the chance to detect a violation and,
thus, asymptotic power, it may entail a high variance in finite
samples—that is, there exists a trade-off between the richness
of V and the finite sample power.

In what follows, we adapt our testing framework to proba-
bility measures (including the pdf and cdf) rather than means
and compare the resulting constraints to K08. Analogous to
equations (5) and (6) for the mean potential outcomes, the
results of Horowitz and Manski (1995) imply the following
bounds on the probabilities that the potential outcomes of
the always takers under treatment and the never takers under
nontreatment are in some subset V :

Pr(Y ∈ V |D = 1, Z = 1) − (1 − q)

q
≤

Pr(Y 1 ∈ V |T = a) ≤ Pr(Y ∈ V |D = 1, Z = 1)

q
,

Pr(Y ∈ V |D = 0, Z = 0) − (1 − r)

r
≤

Pr(Y 0 ∈ V |T = n) ≤ Pr(Y ∈ V |D = 0, Z = 0)

r
, (15)

where q, r are again the shares of always or never takers in the
respective mixed populations. Under assumptions 1J and 3,
it follows (∀ V in the support of Y ) that Pr(Y 1 ∈ V |T = a) =
Pr(Y ∈ V |D = 1, Z = 0), Pr(Y 0 ∈ V |T = n) = Pr(Y ∈

15 Equation (7) in Balke and Pearl (1997) and equations (12) and (13) in
Richardson, Evans, and Robins (2011) provide the same constraints for the
special case that Y is binary.
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V |D = 0, Z = 1) and therefore,

Pr(Y ∈ V |D = 1, Z = 1) − (1 − q)

q
≤ Pr(Y ∈ V |D = 1, Z = 0)

≤ Pr(Y ∈ V |D = 1, Z = 1)

q
,

Pr(Y ∈ V |D = 0, Z = 0) − (1 − r)

r
≤ Pr(Y ∈ V |D = 0, Z = 1)

≤ Pr(Y ∈ V |D = 0, Z = 0)

r
. (16)

We obtain the following inequality constraints:

H0 :

⎛
⎜⎜⎜⎜⎝

Pr(Y∈V |D=1,Z=1)−(1−q)

q − Pr(Y ∈ V |D = 1, Z = 0)

Pr(Y ∈ V |D = 1, Z = 0) − Pr(Y∈V |D=1,Z=1)

q
Pr(Y∈V |D=0,Z=0)−(1−r)

r − Pr(Y ∈ V |D = 0, Z = 1)

Pr(Y ∈ V |D = 0, Z = 1) − Pr(Y∈V |D=0,Z=0)

r

⎞
⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎝

θ1

θ2

θ3

θ4

⎞
⎟⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎟⎠ . (17)

Equation (17) allows us to construct tests with multiple con-
straints, depending on the definition of V (with the number
of constraints being four times the number of V ).

To see how our inequality constraints compare to K08,
we use simple algebra (see online appendix A.2) to rewrite
equation (16) as

Pr(Y ∈ V , D = 1|Z = 1) − (P1|1 − P1|0)
≤ Pr(Y ∈ V , D = 1|Z = 0)

≤ Pr(Y ∈ V , D = 1|Z = 1),

Pr(Y ∈ V , D = 0|Z = 0) − (P1|1 − P1|0)
≤ Pr(Y ∈ V , D = 0|Z = 1)

≤ Pr(Y ∈ V , D = 0|Z = 0), (18)

which must hold for all V in the support of Y . It is easy to see
that equation (18) includes the constraints (14) of K08, and
in addition,

Pr(Y ∈ V , D = 1|Z = 1) − Pr(Y ∈ V , D = 1|Z = 0)

≤ (P1|1 − P1|0),
Pr(Y ∈ V , D = 0|Z = 0) − Pr(Y ∈ V , D = 0|Z = 1)

≤ (P1|1 − P1|0). (19)

The interpretation of this result is that the joint probability of
being a complier and having an outcome that lies in subset V
cannot be larger than the (unconditional) complier share in the
population. To see this, consider any V with nonoverlapping
subsets V that jointly cover the entire support of Y . By the

law of total probability, for instance, the first line of equation
(19) must hold because

P1|1 − P1|0 =
∑
V∈V

[Pr(Y ∈ V , D = 1|Z = 1)

− Pr(Y ∈ V , D = 1|Z = 0)]. (20)

It is worth noting that if V is defined in the way just described
(nonoverlapping V that jointly cover the entire support of Y ),
the constraints (19) are already taken into account by equation
(14) and thus redundant. The prevalence of some Pr(Y ∈
V , D = 1|Z = 1)−Pr(Y ∈ V , D = 1|Z = 0) > (P1|1 −P1|0)
then necessarily implies the existence of at least one distinct
subset V ′ for which Pr(Y ∈ V ′, D = 1|Z = 1) − Pr(Y ∈
V ′, D = 1|Z = 0) < 0 so that equation (14) is violated too;
otherwise equation (20) cannot be satisfied.16 Power gains
based on equation (19) might possibly be realized only if
V contains overlapping V (so that negative densities may
be averaged out) or does not cover the entire support of Y .
As an illustration, a hypothetical example for such a case is
provided in online appendix A.5.

In the simulations and the application, we use the methods
of Bennett (2009) and Chen and Szroeter (2012) to test equa-
tion (17). These differ in two important ways from the K08
procedure. First, the latter derives the critical value of the
test statistic under the least favorable condition for which
the null is rejected with the highest probability (Pr(Y ∈
V , D = 1|Z = 0) = Pr(Y ∈ V , D = 1|Z = 1) and
Pr(Y ∈ V , D = 0|Z = 1) = Pr(Y ∈ V , D = 0|Z = 0)).
In contrast, in the partial recentering approach of Bennett
(2009) and in Chen and Szroeter (2012), the asymptotic null
distribution of the respective test statistic is based on pre-
estimating for which V the moment inequalities are binding,
which may increase finite sample power if V is confined to
a finite class of subsets. On the other hand, these tests can-
not deal with an infinite number of inequality constraints,
while the K08 test can allow V to have an infinite number
of subsets and therefore may asymptotically screen out more
alternatives.17

We conclude this section by pointing out that dominance or
equality constraints that are in the spirit of the mean restric-
tions discussed in section IV may analogously be imposed
with regard to the probabilities that the potential outcomes
of different subpopulations are situated in some subset V .
This allows detecting more violations of IV validity and is
discussed in online appendix A.3.

VII. Simulations

We investigate the finite sample properties of the bootstrap
tests based on inequality moment constraints by simulating
IV models with both continuous and binary outcomes. For
the continuous case, the data-generating process (DGP) is

16 We are indebted to Toru Kitagawa for his helpful comments on this
issue.

17 We are grateful to an anonymous referee for pointing this out.
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the following:

Y = D + βZ + U,

D = I{αZ + ε > 0},
(U, ε) ∼ N(0, 1), Cov(U, ε) = 0.5,

Z ∼ Bernoulli(0.5), independent of (U, ε).

The treatment variable D is endogenous due to the correlation
of the errors U and ε in the structural and the first-stage equa-
tions, respectively. The first-stage coefficient α determines
the share of compliers in the population and thus the width of
the bounds. We therefore expect the power to reject violations
of IV validity to decrease in the coefficient. In the simula-
tions, α is set to 0.2 and 0.6, which corresponds to shares of
roughly 8% and 23%, respectively.18 These figures are well
in the range of complier proportions found in empirical appli-
cations; see, for instance, the example presented in section
VIII. Note that in our model, the unconfounded type restric-
tion (assumption 1) holds by construction because ε and Z are
independent. Furthermore, monotonicity (assumption 3) is
satisfied because αZ and ε are linearly separable and α is con-
stant (i.e., the same for everyone).19 The simulations therefore
focus on the validity of the exclusion restriction (which has
traditionally received most attention). The latter is satisfied
for β = 0 and violated for any β �= 0, implying a direct effect
of Z on Y and therefore a violation of assumption 2. For this
reason, we suspect the power to reject violations of IV valid-
ity to increase in the absolute value of β, as the probability
that E(Y |D = 1, Z = 0) and E(Y |D = 0, Z = 1) fall outside
the parameter bounds in the mixed populations increases in
the magnitude of the direct effect. In the simulations, we set
β to 0 and 1.

Table 3 reports the rejection frequencies of the various
tests at the 5% level of significance for sample sizes n = 250
and 1,000 simulations. The first and second columns indi-
cate the level of α and β, respectively. The third column
(st.dist1) gives max(θ̂1, θ̂2)/st.dev.(Y), that is, the maximum
distance between the estimate E(Y |D = 1, Z = 0) and the
bounds in the mixed population, standardized by the stan-
dard deviation of Y . A positive value implies that the point
estimate of the always takers’ mean potential outcome falls
outside the bounds (i.e., is either smaller than the lower
bound or higher than the upper bound). The fourth column
(st.dist0) provides the distance parameter for the never tak-
ers: max(θ̂3, θ̂4)/st.dev.(Y). Column 5 reports the bias of the
LATE estimator, which is heavily biased whenever β �= 0.
But even under the null with n = 250 and α = 0.2, the

18 The share of compliers is given by Φ(α) − Φ(0) = Φ(α) − 0.5, where
Φ(·) is the cdf of the standard normal distribution.

19 Nonmonotonicity could be introduced, for instance, by considering a
random (rather than a constant) first-stage coefficient that takes both positive
and negative values. Then the instrument weakly increases the treatment for
some units while it weakly decreases it for others, such that both compliers
and defiers may be present (depending on the distribution of the random
coefficient and ε).

estimator performs poorly, suggesting that we should be cau-
tious when using IV estimation in small samples when the
instrument is weak.

Columns 6 to 9 display the rejection frequencies for the
tests based on the constraints under mean independence
in equation (7), namely, the bootstrap test with Bonferroni
adjustment (bs), the Bennett (2009) test with partial (B.p)
and full (B.f) recentering, and the Chen and Szroeter (2012)
test (CS) using Ψ(·) = Φ(·) as the smoothing function.20

The results for testing the probability constraints (17) (under
the stronger IV assumptions of section VI) using the meth-
ods of Bennett (2009) and Chen and Szroeter (2012) are
reported in columns 10 to 15. B.p(2), B.f(2), and CS(2) are
based on two subsets V by cutting the distribution of Y in
each simulation into two at the value that corresponds to
half the difference of the maximum and minimum of the
simulated outcome ((max(Y) − min(Y))/2). B.p(4), B.f(4),
and CS(4) use four subsets based on the following partition:
V1 = (−∞, −1), V2 = [−1, 0), V3 = [0, 1), V4 = [1, ∞).
For all tests, the number of bootstrap draws is set to 499.
Furthermore, note that the bootstrap test with Bonferroni
adjustment and the method of Chen and Szroeter (2012) are
based on studentized θ̂, while the Bennett (2009) tests use
the original moment constraints (as the results are invariant
to studentization).

Under IV validity, the rejection frequencies of any method
are quite low and clearly smaller than 5%. The reason is that
in our simulations with β = 0, θ lies in the interior of possi-
ble parameter values for which the moment inequalities are
satisfied, but not at the boundaries (where the asymptotic size
is exactly 5%). As expected, the empirical size decreases in
α because the bounds become wider due to a higher share
of compliers, and in the sample size, which makes the esti-
mation of θ̂ more precise. Under a violation of IV validity
(β = 1), all tests gain power as the sample size grows and
lose power as the share of compliers becomes larger. Overall,
the partially recentered Bennett (2009) test with two subsets
(B.p(2)) is most powerful in the given scenario. Whenever the
null is violated, it either has the highest rejection frequencies
or comes very close to the best-performing test. Also CS(2)
has comparably high power. Interestingly, the probability-
based tests based on four subsets are generally less powerful
than those based on two subsets, which demonstrates that the
choice of V may importantly affect the properties of the tests.

Table 4 presents the rejection frequencies for binary out-
comes, where the DGP is identical to the previous one with
the exception that Y = I{D + βZ + U > 0}. Therefore, the
true treatment effect depends on the parameter α and is 0.386
for α = 0.2 and 0.403 for α = 0.6. Concerning testing, note
that the mean tests need to be modified in an innocuous way
to be appropriate for binary outcomes (see online appendix
A.4). Furthermore, probability-based tests with four subsets

20 In our simulations, we also considered Ψ(·) = I{· ≥ −1} and Ψ(·) =
exp(·)/(1 + exp(·))−1 as smoothing functions for the Chen and Szroeter
(2012) tests. Because either choice reduced testing power compared to
Ψ(·) = Φ(·), the results are not reported.
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Table 3.—Simulations—Continuous Outcome

Rejection Frequencies Mean-Based Tests

α β st.dist1 st.dist0 b.LATE bs B.p B.f CS

n = 250
0.2 0.0 −0.090 −0.103 −1.440 0.011 0.017 0.007 0.005
0.6 0.0 −0.223 −0.313 −0.110 0.000 0.000 0.000 0.000
0.2 1.0 0.494 0.458 27.841 0.943 0.960 0.916 0.983
0.6 1.0 0.259 0.096 4.825 0.404 0.506 0.373 0.450
n = 1,000
0.2 0.0 −0.118 −0.138 −0.282 0.003 0.003 0.001 0.000
0.6 0.0 −0.243 −0.357 −0.009 0.000 0.000 0.000 0.000
0.2 1.0 0.505 0.482 17.121 1.000 1.000 1.000 1.000
0.6 1.0 0.249 0.094 4.491 0.931 0.965 0.928 0.939

Rejection Frequencies Probability-Based Tests

α β B.p(2) B.f(2) B.p(4) B.f(4) CS(2) CS(4)

n = 250
0.2 0.0 0.031 0.013 0.028 0.004 0.001 0.000
0.6 0.0 0.001 0.000 0.003 0.000 0.000 0.000
0.2 1.0 0.982 0.961 0.621 0.534 0.975 0.782
0.6 1.0 0.794 0.691 0.380 0.245 0.712 0.456
n = 1,000
0.2 0.0 0.005 0.003 0.015 0.003 0.000 0.000
0.6 0.0 0.000 0.000 0.001 0.000 0.000 0.000
0.2 1.0 1.000 1.000 0.992 0.982 1.000 1.000
0.6 1.0 0.998 0.994 0.982 0.945 0.997 1.000

Rejection frequencies at the 5% level. Tests are based on 499 bootstrap draws.

Table 4.—Simulations—Binary Outcome

Mean-Based Tests

α β st.dist1 st.dist0 b.LATE bs B.p B.f CS

n = 250
0.2 0.0 −0.017 −0.082 −0.557 0.012 0.025 0.009 0.016
0.6 0.0 −0.082 −0.441 −0.032 0.000 0.001 0.000 0.000
0.2 1.0 0.132 0.715 6.031 0.798 0.848 0.527 0.935
0.6 1.0 0.123 0.106 0.856 0.192 0.339 0.124 0.326
n = 1,000
0.2 0.0 −0.040 −0.126 −0.088 0.004 0.009 0.002 0.003
0.6 0.0 −0.110 −0.522 0.000 0.000 0.000 0.000 0.000
0.2 1.0 0.131 0.759 3.685 1.000 1.000 1.000 1.000
0.6 1.0 0.121 0.142 0.800 0.820 0.902 0.792 0.921

Probability-Based Tests, n = 250 Probability-Based Tests, n = 1,000

α β B.p(2) B.f(2) B.p(4) B.f(4) CS(2) CS(4)

0.2 0.0 0.032 0.010 0.000 0.010 0.004 0.000
0.6 0.0 0.001 0.000 0.000 0.000 0.000 0.000
0.2 1.0 0.849 0.769 0.334 1.000 1.000 1.000
0.6 1.0 0.338 0.185 0.126 0.899 0.813 0.890

Rejection frequencies at the 5% level. Tests are based on 499 bootstrap draws.

are not considered because the outcome can take only two
values. As before, all tests are quite conservative when β = 0
and even more so for the larger share of compliers or sample
size. Under β = 1, the CS (mean) test has the highest power
overall, but B.p and B.p(2) also perform decently.

VIII. Application

This section presents an application to labor market data
from Card (1995), who evaluates the returns to college
education based on the 1966 and 1976 waves of the U.S.

National Longitudinal Survey of Young Men (NLSYM)
(3,010 observations). Among others, he uses a dummy for
proximity to a four-year college in 1966 as an instrument for
the potentially endogenous decision of going to college. Prox-
imity should induce some individuals (in particular, those
from low-income families) to strive for a college degree who
would otherwise not, for instance, due to costs associated
with not living at home. However, the instrument may well
be correlated with factors like local labor market conditions
or family background (e.g., parents’ education, which could
shape preferences for particular residential areas), which
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Table 5.—Application to Card (1995)—IV Validity Tests

p-Values Mean-Based Tests

Sample compl. st.dist1 st.dist0 bs B.p B.f CS

Full sample 6.9% −0.203 0.224 0.002 0.001 0.001 0.001
w,non.S.,f.edu≥12,u 13.2% −0.419 −0.302 1.000 0.787 1.000 1.000
w,non.S,f.edu<12,u 3.6% −0.051 −0.016 1.000 0.665 0.866 0.919
w,non.S,f.edu≥12,r 16.3% −0.061 −0.396 1.000 0.602 0.936 0.986
w,non.S,f.edu<12,r 6.7% −0.092 −0.164 1.000 0.777 0.976 0.989

p-Values Probability-Based Tests

Sample B.p(2) B.f(2) B.p(4) B.f(4) CS(2) CS(4)

Full sample 0.001 0.002 0.002 0.006 0.000 0.003
w,non.S.,f.edu≥12,u 0.979 0.735 0.907 0.997 1.000 1.000
w,non.S,f.edu<12,u 0.762 0.873 0.008 0.040 0.941 0.627
w,non.S,f.edu≥12,r 0.699 0.894 0.556 0.723 0.962 0.952
w,non.S,f.edu<12,r 0.103 0.187 1.000 1.000 0.443 0.872

Tests are based on 1999 bootstrap draws. w = white, non.S = non-South, f.edu = father’s education, u = urban, r = rural.

might be related to the outcome (log of weekly earnings in
1976). This has been acknowledged by Card (1995), himself,
who for this reason includes a range of control variables in his
estimations. For testing, we follow K08 (who also considers
this data set) and define the educational level as binary treat-
ment, which indicates one’s education to be sixteen years or
more such that it roughly corresponds to a four-year col-
lege degree. We test IV validity in the full sample (i.e.,
unconditionally) and in four subsamples (consisting of white
individuals not living in the South) in order to control for
covariates that are potentially correlated with both the instru-
ment and the outcome. The subsamples differ in terms of
father’s education (twelve or more years or less than twelve
years), and living in an urban or rural area.

Table 5 presents the results. The first column gives the
estimated complier proportion, which is crucial for the tests’
power to detect violations of IV validity; the second and
third columns report the standardized maximum distances
max(θ̂1, θ̂2)/st.dev.(Y), max(θ̂3, θ̂4)/st.dev.(Y). The remain-
ing columns contain the p-values of the bootstrap test with
Bonferroni adjustment (bs) as well as the Bennett (2009)
and Chen and Szroeter (2012) tests (using Ψ(·) = Φ(·) as
smoothing function) for the mean constraints (B.p, B.f, CS)
and the probability constraints (B.p(2), B.f(2), B.p(4), B.f(4),
CS(2), CS(4)) with 2 and 4 subsets V . The latter are defined
by an equidistant grid over the support of Y . In the full sample,
the point estimate of the mean potential outcome of the never
takers falls well outside its bounds, and all tests reject the null
at the 1% level. In contrast, none of the mean constraints is
binding in any of the subsamples, and with the exception of
B.p(4) and B.f(4) in the third subsample, all tests yield rather
large p-values. This leads us to conclude that while college
proximity is most likely not an unconditionally valid instru-
ment, IV validity conditional on covariates is generally not
refuted.21

21 As IV validity is required to hold in any subpopulation defined on
the covariates, testing should ideally include all possible combinations of
covariates to maximize asymptotic power. However, this may be infeasible
in empirical applications due to small samples problems. A method

Table 6.—Application to Card (1995): Difference of Means Tests

Sample ȲD=1,Z=1 ȲD=1,Z=0 diff p-val

Full sample 6.449 6.369 0.081 0.012
w,non.S,f.edu≥12,u 6.465 6.483 −0.018 0.806
w,non.S,f.edu<12,u 6.431 6.568 −0.137 0.193
w,non.S,f.edu≥12,r 6.443 6.258 0.184 0.051
w,non.S,f.edu<12,r 6.518 6.442 0.076 0.390

Sample ȲD=0,Z=0 ȲD=0,Z=1 diff p-val

Full sample 6.094 6.254 −0.160 0.000
w,non.S,f.edu≥12,u 6.348 6.390 −0.043 0.569
w,non.S,f.edu<12,u 6.383 6.336 0.047 0.447
w,non.S,f.edu≥12,r 6.212 6.217 −0.005 0.950
w,non.S,f.edu<12,r 6.261 6.259 0.001 0.985

w = white, non.S = non-South, f.edu = father’s education, u = urban, r = rural.

Finally, we test the mean equality constraints (10) and (11)
using two sample t-tests. Table 6 reports the sample ana-
logues of E(Y |D = d, Z = z) (where z, d ∈ {0, 1}), denoted
by ȲD=d,Z=z, the differences (diff) ȲD=1,Z=1 − ȲD=1,Z=0 and
ȲD=0,Z=0−ȲD=0,Z=1, and the respective (asymptotic) p-values
(p-val). Not surprisingly, the tests yield low p-values for the
full sample of Card (1995), which did not even satisfy the
weaker inequality constraints. In contrast, all subsamples
pass the stricter difference of means tests at the 5% level of
significance. This suggests that IV validity and homogene-
ity of the mean potential outcomes of compliers and always
takers under treatment and of compliers and never takers
under nontreatment are likely to hold given the covariates
considered.

IX. Conclusion

The LATE framework of Angrist (1994) and Angrist et al.
(1996) implies that the mean potential outcome of the always
takers under treatment and that of the never takers under non-
treatment can be both point-identified and bounded. As the

specifically designed for testing conditional on covariates is yet to be
developed.
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points must lie within their respective bounds, this provides
four testable implications for IV validity, which can be formu-
lated as inequality moment constraints. We consider various
methods for testing the latter: a simple bootstrap test with
Bonferroni adjustment, the minimum p-value-based test of
Bennett (2009), and the Chen and Szroeter (2012) test using
indicator smoothing. Furthermore, we point out that power
against violations of IV validity may be increased by impos-
ing restrictions on the order of the mean potential outcomes
across subpopulations. If one is even willing to assume equal-
ity in mean potential outcomes across subpopulations, simple
difference of means tests can be used for testing. We also
relate our work to Kitagawa (2008), who tests for the non-
negativity of complier outcomes’ densities in subsets of the
outcome support to verify IV validity. By adapting our frame-
work to probability measures rather than means of potential
outcomes, we obtain testable implications that are equiva-
lent to those in Kitagawa (2008), given that the probability
measures used for testing are defined by nonoverlapping sub-
sets that jointly cover the entire outcome support. Finally, we
briefly investigate the finite sample properties of our tests and
consider an empirical application to labor market data from
Card (1995).

The testing problem discussed in this paper raises the ques-
tion of what can be done about identification if instrument
validity is rejected. Obviously, the most appropriate solution
would be to search for better instruments, but this may not
always be feasible in practice. As an alternative, one could
relax some of the IV assumptions. Then, point identification
is lost, but the LATE might still be partially identified within
reasonable bounds in the spirit of Manski (1989). Flores and
Flores-Lagunes (2010), for example, derive bounds on the
LATE when the exclusion restriction is violated, but mono-
tonicity of the treatment in the instrument holds, while Huber
and Mellace (2010) consider the violation of monotonicity
but maintain the exclusion restriction.
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