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Four Parameters of Interest in the
Evaluation of Social Programs
James Heckman,* Justin L. 'Iobias.t and Edward Vytlacilr

This paper reviews four treatment parameters that have become commonly used in the program
evaluation literature: the average treatment effect, the effect of treatment on the treated, the
local average treatment effect, and the marginal treatment effect. We derive simply computed
closed-form expressions for these treatment parameters in a latent variable framework with
Gaussian error terms. These parameters can be estimated using nothing more than output from
a standard two-step procedure. We also briefly describe recent work that seeks to go beyond
mean effects and estimate the distributions associated with various outcome gains. The tech-
niques presented in the paper are applied to estimate the return to some form of college edu-
cation for various populations using data from the National Longitudinal Survey of Youth.

1. Introduction

The problem of evaluating the effectiveness of a social program or a "treatment" is a
central problem in social science and medicine. The problem of selection bias could arise in
any evaluation. Individuals observed participating in a program or receiving treatment often
possess different characteristics than an average person. Evaluating the economic return to a
program requires accounting for the nonrandom assignment of individuals into the treated and
untreated states.

One popular approach for dealing with selection bias, introduced in Gronau (1974) and
Heckman (1974, 1976), is to specify a latent index model that relates the rule for assigning
individuals from treatment to the potential treatment outcomes. The latent index has the inter-
pretation of the expected net utility derived from receiving treatment; individuals participate in
a program if net utility is positive (or nonnegative) and do not participate if net utility is
negative. This approach is based on assumptions about error distributions and allows for de-
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pendence between the errors in outcome and choice equations. Although computationally con-
venient, this approach has been criticized for its reliance on distributional assumptions and lack
of robustness to departures from normality (Goldberger 1983; Paarsch 1984; and later work by
Glynn, Laird, and Rubin 1986), although the empirical relevance of this criticism is far from
clear (Heckman 2001).

In response to these criticisms, recent analysts have adopted a more robust approach and
have attempted to identify and estimate various treatment parameters without imposing strong
distributional assumptions (see, for example, the local average treatment effect [LATE] analysis
of Imbens and Angrist 1994). Although these methods are free of parametric distributional
assumptions, they typically estimate only one treatment parameter and are quite limited in the
range of policy questions they can answer (Heckman and Vytlacil 2000a). Further, the assump-
tions imposed in LATE analysis are actually equivalent to those required to specify a nonpara-
metric selection model (Vytlacil 2002). l

This paper uses a latent variable framework to unite the recent treatment effect literature
with the classical selection bias literature. We obtain simple closed-form expressions for four
treatment parameters of interest: the average treatment effect (ATE), the effect of treatment on
the treated (IT), LATE (Imbens and Angrist 1994), and the marginal treatment effect (MTE)
(Bjorklund and Moffitt 1987; Heckman 1997; Heckman and Vytlacil 1999, 2000a, b) for the
"textbook" Gaussian selection model. Our impression is that despite recent advances in non-
parametric and semiparametric estimation of these parameters, many practitioners will continue
to use the two-step estimator of Heckman (1976) when confronted with selection bias, and thus
it is beneficial to clearly describe simple methods for estimating these parameters in the textbook
selection model. For others, these expressions may be used as a starting point to illustrate the
empirical importance of selection bias. Throughout this paper, we review other recent work that
has relaxed the distributional requirements of this textbook model.

In addition to presenting mean effects, we also discuss how one might approach estimation
of the distributions associated with these parameters of interest. The extension to the distribu-
tions of outcome gains is not immediate, nor without difficulty, since the distributions of interest
depend on the unidentified cross-potential outcome correlation parameter. We briefly mention
several approaches for estimating these distributions, and provide the reader with references for
further information on this topic.

The plan of this paper is as follows. In the next section, we present a general model of
potential outcomes, and define and interpret the various treatment parameters within it. In section
3, expressions for these parameters are derived under the assumption of trivariate normality. In
section 4, we briefly discuss how one might approach estimation of the distributions associated
with various outcome gains, and thus extend the analysis of mean effects. Section 5 applies the
mean effect analysis to estimate various average gains in postschooling earnings resulting from
the receipt of some form of college education. Using data from the National Longitudinal Survey
of Youth (NLSY) we present point estimates of ATE, IT, LATE and MTE. The paper concludes
with a summary in section 6.

2. Treatment Parameters in a Canonical Model

Consider a model of potential outcomes:

yo = u ú ç + U", D* = ze + UD. (1)
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The first two equations denote outcome equations in two possible "states" or "sectors"
(college or noncollege in the application of section 5). Without loss of generality, we assume
that the first state indexed by the "1" superscript represents the treated state and the "0"
superscript denotes the untreated state. Each agent is observed in only one state, so that either
yl or yo is observed for each person, but the pair (YI,YO) is never observed for any given
person. What we would like to recover is information about various expected gains from the
receipt of treatment, where the gain is denoted by a==YI - yo. .

Let D(Z) denote the observed treatment decision, where D(Z) = 1 denotes receipt of
treatment and D(Z) = 0 denotes nonreceipt. The variable D* is a latent variable that genera!es
D(Z) according to a threshold crossing rule,

D(Z) = l[D*(Z) ;::: 0] = 1[Z6 + UD;::: 0] (2)

where l[A] is the indicator function that takes the value 1 if the event Ais true and the value
ootherwise. In an extension of the Roy (1951) model, D* = yl - yo - C, where C represents
the cost of participating in the treated state, so that agents choose to receive treatment if the
gain from participating in the program minus costs is nonnegative. We also define the following
counterfactual choice variables. For any z that is a potential realization of Z, we define the
variable D(z) = 1[z6 ;::: UD]. D(z) indicates whether or not the individual would have received
treatment had her value of Z been externally set to z. holding her unobserved UD constant. We
require an exclusion restriction and denote by Zk some element of Z that is not contained in X.
By varying Zk' we can manipulate an individual's probability of receiving treatment without
affecting the potential outcomes. Finally, we assume (UD UI UO) is independent of X and Z.

Letting Y denote observed earnings,

Y = DYI + (1 - D)YO. (3)

This model has been called the switching regression model of Quandt (1972), Rubin's model
(Rubin 1978), or the Roy model of income distribution (Roy 1951; Heckman and Honore 1990).1
To illustrate how a model of this type can be applied to evaluate an interesting policy question,
consider the problem of estimating the return to a college education. In this case, Y represents
log earnings, yl denotes the log earnings of college graduates, and yo denotes the log earnings
of those not selecting into higher education. The latent index maps people into either the "col-
lege" (or treated) state and the "no-college" (or untreated) state. To estimate the return to
college, we might estimate the expected college log wage premium for given characteristics X,
(i.e., E[Y' - yOIX ]).2 In general, given the model described by Equations 1 and 2, we would
like to have methods for estimating various average gains to program participation. In this
paper, we examine four such treatment parameters, which measure possibly different average
gains to the receipt of treatment. These four parameters are ATE, IT, LATE, and MTE.3

ATE is defined as the expected gain from participating in the program for a randomly
chosen individual. As before, we let a == yl - yo denote the gain from program participation,
and note that the average treatment effect conditional on X = x can be expressed as:

I Arnemiya (1985) has classified models of this type as generalized tobit models, and refers to the model in Equation I
as the type 5 tobit model.

2 Other applications of this model include Lee (1978) and Willis and Rosen (1979).
3 For a more general discussion of the parameters and the relation among them, see Heckman and Vytlacil (1999,

2000a, b).
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ATE(x) = E(A Ix = x) = X([31 - [30). (4)

The average treatment effect evaluated at the random variable X is ATE(X), which defines the
treatment parameter as a function of the characteristics X. We can obtain unconditional estimates
by integrating Equation 4 over the distribution of X,

f
I n

ATE = E(A) = ATE(X) dF(X) ú ;; ú ATE(x;) = X([31 - [30), (5)

where n is sample size.
A conceptually different parameter is TT. This is the average gain from treatment for those

that actually select into the treatment:

TT(x, z, D[z] = 1) = E(A [x = x, Z = z: D[z] = 1)

= X([31 - [30) + E(UI - UOIUiJ 2: -zS, X = x, Z = z)

= x(f31 - [30) + E(UI - UO IUD 2: - zS), (6)

where the third equality follows from the assumption that (UD UI UO) is independent of (X, Z).
The value of the TT parameter evaluated at the random variables (X, Z) is TT(X, Z, D [Z] =
1). As with ATE, we can obtain an unconditional estimate by integrating over the joint distri-
bution of X and Z for those who actually receive treatment. Letting n, be the number of obser-
vations with D; = 1, TT can be approximated as follows:

TT = E(AID[Z] = 1) = fTT(X, Z, D[Z] = 1) dF(X, ZID[Z] = 1)

1 n
ú - 2.: DiTT(x;, Z;, D[z;l = 1). (7)

n, X ú ä

The LATE of Imbens and Angrist (1994) estimates an average gain to program participation
without explicitly specifying a latent variable framework or imposing a distributional assump-
tion." LATE is defined as the expected outcome gain for those induced to receive treatment
through a change in the instrument from Zk = z, to Zk = z;. The variable Zk is assumed to affect
the treatment decision (is contained in Z in Equation 1), but not to affect the outcomes yl and
yo. Below and throughout this paper, we define the LATE parameter as a change in the index
from ZS = zS to ZS = z's, where z'S > zS and z and z' are identical except for their kth
coordinate. Because of the latent index structure in Equations 1 and 2, we could equivalently
define the treatment parameters in terms of the propensity score, P(Z) = Pr(D = 11Z) = 1 -
FuD( - ZS), where Fs denotes the cdf of the random variable S. The LATE parameter is defined
as follows:

LATE(D[z] = 0, D[ZI] = 1, X = x)

= E(AID[z] = 0, D[Z'] = 1, X = x)

= X([31 - [30) + E(UI - UOI-z's ::s UD::s -zS, X = x)

= X([31 - [30) + E(UI - uOI-z's ::s UD ::s -zS), (8)

4 The implications of the assumptions imposed in Imbens and Angrist (1994) that permit estimation of the LATE parameter
have been examined by Vytlacil (2002). Vytlacil shows that the independence and monotonicity assumptions used by
Angrist and Imbens imply a latent variable specification without parametric restrictions.
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where the third equality follows from the assumption that (UD UI UO) is independent of (X, Z).
There are two ways to define the unconditional version of LATE. First, consider

E(Ll/D[Z] = 0, D[z'] = 1) = JLATE(D[z] = 0, D[z'] = 1, X) dF(X)

1 n=- 2: LATE(D[z] = 0, D[z'] = 1, Xi); (9)
n ;=1

The parameter E(LlI D[z] = 0, D[z'] = 1) corresponds to the treatment effect for á å Ç á î á Ç ú ú ë
who would not select into treatment if their vector Z was set to z but would select into treatment
if Z was set to z'. An alternative definition of the unconditional version of LATE is as follows.
Let ZO(Z) equal Z but with the kth element replaced by Zk' Let ZI(Z) equal Z but with the kth
element replaced by z'k' In this notation the second definition of the unconditional version of
LATE,

E(LlID[ZO{Z}] = 0, D[ZI{Z}] = 1)

=JLATE(D[ZO{Z}] = O,D[ZI{Z}] = 1, X) dF(X, Z)

1 n

= - 2: LATE(D[ZO{zi}] = 0, D[ZI{Zi}] = 1, x;).
n i=1

(10)

This parameter corresponds to the treatment effect for individuals who would not select into
treatment if the kth component of the Z vector is set to Zk (all other components of Z unchanged),
but would select into treatment if the kth component of the Z vector is set to z\ (all other
components of Z unchanged).

Finally, the MTE parameter (Bjorklund and Moffitt 1987; Heckman 1997; Heckman and
Smith 1998; Heckman and Vytlacil 1999, 2000a, b) is the treatment effect for individuals with
a given value of UD,

MTE(x, uD) = E(LlIX = x, UD = uD)

= x(131 - 13°) + E(UI - UOIUD = u'', X = x)

= x(13 1 - 13°) + E(UI - UO IUD = uD), (11)

where the third equality again follows from the assumption that (UD UI UO) is independent of
X. Evaluation of the MTE parameter at low values of uD averages the outcome gain for those
with unobservables making them least likely to participate, whereas evaluation of the MTE
parameter at high values of uD is the gain for those individuals with unobservables that make
them most likely to participate. Because X is independent of UD, the MTE parameter uncon-
ditional on observed covariates can be written as

J
I n

MTE(uD) = MTE(X, uD) dF(X) = ;; ú MTE(x;, uD )

=x(13 1 - 130) + E(UI - uol UD = uD).

The MTE parameter can also be expressed as the limit form of the LATE parameter,
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lim LATE(x, D[z] = 0, D[z'] = 1)
Z8--7Z'8

= x(13 1 - 13°) + lim E(VI - VOI-z'8 ú VD ú -z8, X = x)
Z8--7z'9

Thus the MTE parameter measures the average gain in outcomes for those individuals who are
just indifferent to the receipt of treatment when the z8 index is fixed at the value -ru".

The four parameters above define different average gains to program participation if VD is
not (mean) independent of VI - VO, but the four parameters are identical if VD is mean
independent of VI - VO conditional on X = x. In this paper, we derive closed-form solutions
and simple estimators for these four parameters in arguably the model most widely used in
empirical practice-the Gaussian selection model. Extension; of this standard analysis have
been proposed by many, including Lee (1982, 1983), Heckman and Robb (1985, 1986), Heck-
man (1990), Andrews and Schafgans (1998), Heckman and Vytlacil (2000a), and Heckman,
Tobias, and Vytlacil (2000). In the following section, we provide simple expressions for these
parameters in the Gaussian selection model, and invite the reader to see the studies above for
more general procedures.

3. Simple Expressions for Treatment Parameters in the Gaussian Selection
Model

This section derives expressions for ATE, TT, LATE, and MTE as given in Equations 4-
11 under the assumption of trivariate normality. Results for this case were first reported in
Heckman and Vytlacil (2000b), although they present a more general analysis and do not discuss
how estimates of these parameters can be obtained using simple two-step procedures.

Results for the "Textbook" Model

In the "textbook" selection model, we make the assumption of jointly normally distributed
errors:

The variance parameter in the selection equation is normalized to unity without loss of gener-
ality. Immediately, we recognize that ATE takes the form in Equation 4, and that the distribu-
tional assumption imposed does not change the functional form of this relation. Using the
normality assumption, we find that the expression for TT is given as:

(12)

where Pi == Corr(Vi, VD), i = 0, 1. Under the normalization that the variance of the disturbance
term in the selection equation is unity, P;O'j = (JiD' As previously noted, under independence
between VD and (VI - VO), all treatment parameters are the same. Thus, if COV(VI - VO, VD)
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= 0 or P10"1 = PoO"o, TT reduces to ATE in Equation 4. In this case, people are not selecting
into program on the basis of their unobserved (by the econometrician) gain, and all the treatment
parameters reduce to ATE. IfCov(UI - U", UD) > 0, then TT > ATE. If this condition is true,
people are selecting into treatment on the basis of their idiosyncratic gain to treatment, and thus
the gain from program participation for those observed in the treated state will exceed the gain
for the average person. Also note that as ze ú 00, TT ú ATE. In this case, the probability of
receiving treatment is one given the observable characteristics Z = z and thus there is no
selection problem. In this case, the conditioning information D = 1 is redundant given K ú É

characteristics Z = z and thus the two parameters in Equations 4 and 6 are equal.
Using standard results (e.g., Cramer 1946 or Johnson, Kotz, and Balakrishnan 1992), the

LATE parameter can easily be derived using the fact that if (Y, z) - N(fJ-y, fJ-t, O"y' O"t' p) and b
> a, then

(
<I>[a] - Y f [ x ú z F

E(y Ia :5 Z :5 b) = fJ-y + PO"y Y f [ x ú z _ <I>[a] ,

where a = (a - fJ-t)/O"t' ú = (b - fJ-t)/O"t' Thus,

LATE(x, D[z] = 0, D[z'] = 1) = E(YJ -'- YOlx, -z'e :5 UD:5 [-ze])

_ (I _ f.l.O) + _ <I>(z'e) - <I>(ze)
- x ú ,... (P10"1 PoO"o) <I>(z'l) _ <I>(ze)' (13)

The MTE corresponds to the expected outcome gain for those individuals who are just
indifferent to the receipt of treatment at the given value of the unobservable u". Formally,

MTE(x, uD) = u E ú f - ú l F + E(UI - UOI UD = uD)

= u E ú ä - ú l F + E(UII UD = uD) :- E(UOI UD = uD)

= u E ú f - ú l F + (PIO"I - PoO"o)uD.

We also note that MTE can be regarded as the limit form of LATE,5

. . [<1>( - uD
) - <I>(t)1

MTE(x, uD) = u E ú ä - ú l F + (P10"1 - PoO"o) í ú ä ú a <I>(-uD) - <I>(t)

. [(<I>[-UD] - <I>[tD/(-uD - t)]
= u E ú ä - ú l F + (P10"1 - PoO"o) í ú ä ú a (<I>[-uD] - <I>[t]/( -uD - t)

= u E ú f - ú l F + (PIO"I - PoO"o)uD • (14)

Evaluating MTE when uD is large corresponds to the case where the average outcome gain
is evaluated for those individuals with unobservables making them most likely to participate,
(and conversely when uD is small). When uD = 0, MTE = ATE as a consequence of the
symmetry of the normal distribution.

Estimation

It is important to recognize that the expressions above can be consistently estimated using
nothing more than the output from a two-step procedure. Specifically, one can consistently
estimate these parameters as follows:

5 The last line in this derivation follows from L'Hopital's rule.
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(i) Obtain 6 from a probit model on the decision to take the treatment.
(ii) Compute the appropriate selection correction terms evaluated at 6 (i.e., <j>[Z;6]/<I>[Z;6]

when D; = 1, and <j>[Z;6]/[1 - <I>{Z;6}] when D; = 0.)
(iii) Run treatment-outcome-specific regressions (for the groups [i: D, = 1] and [i: D, =

0]) with the inclusion of the appropriate selection-correction terms obtained from the previous
step.

(iv) Given ú ç I ú ä I ú i D and p;-O:o obtained from step (iii), and 6 from step (i), use these
parameter estimates to obtain point estimates of the treatment parameters for given X, Z, and
Z'. Alternatively, one could integrate over the distribution of the characteristics to obtain un-
conditional estimates, as suggested in section 2.

..
4. Going Beyond Mean Effects

The previous section, and most of the evaluation literature, has focused on the estimation
of mean or average returns to the receipt of treatment. In this section we briefly describe some
recent methods that can be used to determine the distributions associated with various outcome
gains resulting from the receipt of treatment.

It is clear that knowledge of the joint distribution of outcomes affords the estimation of a
wealth of interesting and policy-relevant parameters that cannot be determined from only mean
effects. For example, even if the average treatment effect is large and positive, it is still possible
that a substantial fraction of individuals receive negative effects from the treatment. To char-
acterize the effectiveness of the program or treatment, we would like to have some knowledge
of the dispersion of the various outcome gains. In addition, the following questions seem to be
of primary interest in the evaluation of a given program: (i) What is the probability that a
randomly chosen person will benefit positively from the receipt of treatment? (ii) What is the
probability of a positive treatment effect for those actually selecting into the treatment? (iii)
What is the probability that the treated receive a higher return to treatment than an average
person? As emphasized by Heckman, Smith, and Clements (1997) and Heckman and Smith
(1998), all of these parameters are interesting, and their investigation requires more than just
knowledge of mean effects."

Without further restrictions, the distribution of treatment effects is not identified. One re-
striction is to impose the Roy model, in particular, that D = l[yl - yo ?: 0], so that za =
X(W - 13°) and UD = UI - UO. Under these restrictions, and additional support conditions,
Heckman and Honore (1990) show that it is possible to identify the joint distribution of (U!
UO) and thus to identify the distribution of treatment effects. This analysis was further extended
by Heckman, Smith, and Clements (1997), Heckman and Smith (1998), and Hansen (1999).
Another restriction that will allow identification of the distribution of treatment effects is to
assume that (Ul UO UD) follow a factor structure (see Aakvik, Heckman, and Vytlacil 2000;
Hansen and Heckman 2001).7 AU of these methods provide ways for "solving" the unidentified
parameter problem, and enable estimation of the distributions of interest.

6 See Heckman, Smith, and Clements (1997) and Heckman and Smith (1998) for a detailed discussion of different
questions of interest related to the distribution of treatment effects, and for the connection between the distribution of
treatment effects and various criteria for evaluating social programs.

7 Carneiro, Heckman, and Vytlacil (2001) propose a test for the factor-structure assumption.



Distinguished Guest Lecture 219

Another approach is to not impose additional structure but instead place bounds on the
unidentified parameters of interest. Particularly relevant is work in the Bayesian literature, where
Vijverberg (1993), Koop and Poirier (1997), and Poirier and Tobias (200la, b) note that although
the cross-regime correlation parameter is unidentified, one can learn about this parameter
through information contained in the identified parameters," Specifically, the positive definite-
ness of the 3 X 3 covariance matrix of the disturbance terms adds an additional source of
information, and this information may help us to learn (or at least bound) the values of this
parameter. That is, knowledge of the identified correlations can "spill over" and thereby update
our beliefs about the unidentified cross-regime correlation. Koop and Poirier (1997) and Poirier
and Tobias (200lb) argue that the marginal posteriors and priors for this unidentified correlation
can differ substantially, and thus in many situations, learning takes place about this parameter.
Despite this, the prior will still affect the behavior of the unidentified parameter even in large
samples," and thus' it is necessary to describe sensitivity of results to the choice of a prior.

5. The Returns to College

To illustrate how point estimates of the mean effects are obtained and interpreted, we apply
the techniques discussed in section 3 to estimate the return to some form of college education,
noting that the problem of selection bias has long been recognized as important in assessing
the returns to schooling (see, e.g., Willis and Rosen 1979). Our data are taken from the NLSY.
In our analysis, yl denotes the log of 1991 hourly earnings for those individuals completing at
least 13 years of schooling by 1991, and yo is the log of hourly wages for those with 12 or
fewer years of schooling. The sample is restricted to white maies who are not enrolled in school
in the current year and report hourly earnings between $1 and $100. Observations are also
deleted when other explanatory variables used in the analysis are missing, resulting in a final
sample of 1230 observations.

The variables in X include an intercept, two indicators for residence in the Northeast and
South,!" potential labor market experience and its square, II an indicator for residence in an urban
area, the local unemployment rate, and a measure of "ability" denoted as g. This ability measure
is constructed from the 10 component tests of the Armed Services Vocational Aptitude Battery
provided in the NLSY. Because people vary in age at the time of the test, each component test
is first regressed on age. The residuals from this regression are then standardized, and g is
defined as the first principal component of the standardized residuals.P We choose a parsimo-
nious specification for the variables in the selection equation (2), which includes an intercept,
g, indicator variables denoting if the respondent's mother and father attended college, an indi-
cator for residence in an urban area at age 18, and number of siblings. The last variable serves

8 Other work that develops bounds on the distribution of treatment effects includes Heckman, Smith, and Clements
(1997) and Heckman and Smith (1998).

9 See Poirier and Tobias (200Ib) for a more complete description of the role of the prior.
10 The NLSY provides four regional variables-Northcentral, Northeast, South, and West.
II Potential experience is defined as Age - Years of Schooling - 6.
12 For more on the construction and use of this ability measure, see Cawley et al. (1997).
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Table 1. Coefficients and Standard Errors for Application of Section 5

Variable Coefficient Standard Error

College state
Constant 1.85 0.225
g (Ability) 0.092 0.053
Northeast 0.124 0.055
South 0.059 0.057
Experience 0.098 0.044
Experience 2 -0.004 0.003
Urban 0.326 0.072
Unemp. Rate -0.002 0.002
A (Z6) -0.165 0.081

No-college state .,
Constant 1.89 0.424
g (Ability) 0.191 0.036
Northeast 0.126 0.057
South -0.046 0.053
Experience 0.043 0.067
Experience 2 -0.001 0.003
Urban 0.136 0.051
Unemp. ú ~ í É 0.001 0.002
-A (-Z8) 0.097 0.094

Selection equation
Constant -0.478 0.149
MomCollege 0.541 0.112
DadCollege 0.603 0.097
Numsibs -0.069 0.024
g (Ability) 0.754 0.048
Urban18 0.096 0.131

as our primary exclusion restriction and is assumed to affect the college entry decision without
affecting postschooling earnings.'>

We begin by describing the computation of the mean treatment parameters, as presented
in section 2. Point estimates of the ATE are obtained by averaging the conditional treatment
effects (given X) over the sample distribution of characteristics, as in Equation 5. For TI, point
estimates are obtained as in Equation 7 by averaging over the joint distribution of characteristics
(given X and Z) for the subsample that actually selects into college. To estimate LATE, we
average over the joint distribution of characteristics after setting the number of siblings variable
in Z = z equal to four, and equal to 0 in Z = z' (this is the second form of the unconditional
LATE parameter previously discussed). This estimates the average college log wage premium
for persons induced to attend college when the number of siblings has been lowered from four
to zero. Finally, for each value of UD, we construct the MTE parameter not conditioning on
observable characteristics by averaging MTE(X, uD) over the sample distribution of X charac-
teristics. In section 2, we regarded MTE as a function of u", and suggested plotting the effect

J3 The number-of-siblings variable was found to be a significant determinant of the college entry decision, but was not
significant at the 5% level when included as a regressor in the outcome equations for the college and no-college states.
Other variables, such as distance to college, the local unemployment rate at age 18, and a state-level tuition variable
were also constructed and investigated as potential instruments. These variables were found to have surprisingly little
power in explaining the college entry decision for these data and thus we selected number of siblings as our instrument.
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over the support of UD. Because the result is linear in uD, we simply report the slope of that
effect. Point estimates of the treatment parameters are scaled by the difference in average years
of schooling across the college and no-college groups (=3.8) to estimate the return to schooling.

Results of the mean effect analysis indicate that a randomly chosen person might expect
to receive a 9% increase in hourly wages resulting from the receipt of some, form of higher
education. Those actually selecting into college receive about a 4% increase in hourly wages,
whereas those induced to attend college as a result of having no siblings (relative to four
siblings) approximately receive an 8% increase in hourly wages." The estimated MTE parameter
is linear in UD with a slope equal to -0.07. This negative slope indicates that individuals with
unobservab1es making them most likely to enroll in college receive the smallest return to a
college education. We also test and reject the hypothesis of a constant MTE (i.e., reject Hi:
COV[UD, U! - UO] = 0), and conclude that selection is an important feature of this data. Similar
results are reported in Carneiro, Heckman, and Vytlacil (2001) and Heckman (2001).

The methods used here are easily implemented and can be applied to estimate a variety of
average gains to program participation in the presence of selection bias. Although these results
depend on the normality assumption, such an assumption can be relaxed using more general
parametric models (e.g., Heckman, Tobias, and Vytlacil 2000), or using the more general sern-
iparametric and nonparametric techniques described in the references above. Nonetheless, the
simple expressions obtained for the standard Gaussian selection model offer a useful starting
point for research in program evaluation.

6. Conclusion

This paper reviewed and provided simple expressions for four parameters commonly used
to evaluate the effectiveness of a given program or treatment: ATE, IT, LATE, and the MTE.
These expressions were obtained for the "textbook" selection model. The appeal of the approach
described in this paper is that practitioners can obtain consistent estimates of these parameters
using nothing more than a standard two-step estimator.

The modern approach to program evaluation focuses on the estimation of narrowly defined
parameters without having to impose strong distributional assumptions. The approach adopted
in this paper permits estimation of a variety of policy-relevant parameters as well as estimation
of the four treatment effects listed above, rather than one or the other parameters featured in
the recent treatment effect literature. In addition, we briefly described several methods for going
beyond estimation of mean parameters to enable researchers to estimate the distributions as-
sociated with various outcome gains.

The methods presented in this paper were applied to estimate the return to a college
education. Using data from the NLSY, we obtained point estimates of ATE, TT, LATE, and
MTE for the textbook Gaussian selection model. Our mean parameter results indicated that the
receipt of some form of college education would lead to an expected increase in hourly wages
equal to 9% for a randomly selected person, and equal to 4% for those actually selecting into
higher education.

14 The estimated standard errors associated with the point estimates of the ATE, IT, and LATE parameters above were
0.03, 0.04, and 0.03, respectively, and were computed using the nonparametric bootstrap.
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