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In this paper, we propose nonparametric estimators of sharp bounds on the distribu-
tion of treatment effects of a binary treatment and establish their asymptotic distri-
butions. We note the possible failure of the standard bootstrap with the same sample
size and apply the fewer-than-n bootstrap to making inferences on these bounds.
The finite sample performances of the confidence intervals for the bounds based on
normal critical values, the standard bootstrap, and the fewer-than-n bootstrap are
investigated via a simulation study. Finally we establish sharp bounds on the treat-
ment effect distribution when covariates are available.

1. INTRODUCTION

Evaluating the effect of a treatment or a program is important in diverse dis-
ciplines, including social sciences and medical sciences. In medical sciences,
randomized clinical trials are often used to evaluate the efficacy of a drug or a
procedure in the treatment or prevention of disease. The central problem in the
evaluation of a treatment is that any potential outcome that program participants
would have received without the treatment is not observed. Because of this miss-
ing data problem, most work in the treatment effect literature has focused on the
evaluation of various average treatment effects such as the mean of the treatment
effects; see the recent book by Lee (2005) for discussion and references. However,
empirical evidence strongly suggests that treatment effect heterogeneity prevails
in many experiments, and various interesting effects of the treatment are missed
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932 YANQIN FAN AND SANG SOO PARK

by the average treatment effects alone; see Djebbari and Smith (2008), who stud-
ied heterogeneous program impacts in social experiments such as PROGRESA;
Black, Smith, Berger, and Noel (2003), who evaluated the Worker Profiling and
Reemployment Services system; and Bitler, Gelbach, and Hoynes (2006), who
studied the welfare effect of the change from Aid to Families with Dependent
Children (AFDC) to Temporary Assistance for Needy Families (TANF) programs.
Other work focusing on treatment effect heterogeneity includes Heckman
and Robb (1985), Manski (1990), Imbens and Rubin (1997), Lalonde (1995),
Dehejia (1997), Heckman and Smith (1993), Heckman, Smith, and Clements
(1997), Lechner (1999), and Abadie, Angrist, and Imbens (2002).

When responses to treatment differ among otherwise observationally equiva-
lent subjects, the entire distribution of the treatment effects or features of the treat-
ment effects other than its mean may be of interest. Two approaches have been
proposed in the literature to study the distribution of the treatment effects. The
first is the bounding approach originated in Manski (1997a). Assuming monotone
treatment response, Manski (1997a) developed sharp bounds on the distribution
of the treatment effects. In the second approach, restrictions are imposed on the
dependence structure between the potential outcomes such that their joint distribu-
tion and the distribution of the treatment effects are identified; see, e.g., Heckman
et al. (1997), Biddle, Boden, and Reville (2003), Carneiro, Hansen, and Heckman
(2003), and Aakvik, Heckman, and Vytlacil (2005), among others. Abbring and
Heckman (2007) provides a detailed survey of recent analyses using the second
approach.

In this paper, we take the bounding approach and study the estimation and
inference on sharp bounds on the distribution of the treatment effects. Unlike
Manski (1997a), we do not assume monotone treatment response. Instead, we
assume that the marginal distributions of the potential outcomes are identified,
but their dependence structure is not. One prominent example of this is provided
by ideal randomized experiments. In an ideal randomized experiment, partici-
pants in the experiment are randomly assigned to a treatment group or a control
group. Because of random assignment, observations on the outcome of partic-
ipants in the treatment group identify the distribution of the potential outcome
with treatment, and observations on the outcome of participants in the control
group identify the distribution of the potential outcome without treatment, but the
two independent random samples do not have any information on the dependence
structure between the potential outcomes. As a result, neither the joint distribution
of the potential outcomes nor the distribution of the treatment effects (defined as
the difference between the two potential outcomes) is identified.

Sharp bounds on the joint distribution of the potential outcomes with identified
marginals are given by the Fréchet-Hoeffding lower and upper bound distribu-
tions; see Heckman and Smith (1993), Heckman et al. (1997), Manski (1997b),
and Abbring and Heckman (2007) for their applications in program evaluation.
For randomized experiments, Heckman et al. (1997) proposed nonparametric
estimates of the Fréchet-Hoeffding distribution bounds and developed a test for
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THE DISTRIBUTION OF TREATMENT EFFECTS 933

the “common effect” model by testing the lower bound of the variance of the
treatment effects. They also suggested an alternative test based on the difference
between the quantile functions of the marginal distributions of the potential out-
comes referred to as the quantile treatment effects (QTE); see Firpo (2007) or
Section 2 for more references.

Sharp bounds on the distribution of the treatment effects—the difference be-
tween two potential outcomes with identified marginals—are known in the prob-
ability literature. A.N. Kolmogorov posed the question of finding sharp bounds
on the distribution of a sum of two random variables with fixed marginal distri-
butions. It was first solved by Makarov (1981) and later by Rüschendorf (1982)
and Frank, Nelsen, and Schweizer (1987) using different techniques. Frank et al.
(1987) showed that their proof based on copulas can be extended to more general
functions than the sum. Sharp bounds on the respective distributions of a differ-
ence, a product, and a quotient of two random variables with fixed marginals can
be found in Williamson and Downs (1990). More recently, Denuit, Genest, and
Marceau (1999) extended the bounds for the sum to arbitrary dimensions and pro-
vided some applications in finance and risk management; see Embrechts, Hoeing,
and Juri (2003) and McNeil, Frey, and Embrechts (2005) for more discussion and
additional references.

By making use of the expressions in Williamson and Downs (1990), we pro-
pose nonparametric estimators of sharp bounds on the distribution of the treatment
effects for randomized experiments and establish their asymptotic properties.
It turns out that the asymptotic distributions of these bounds may be discontin-
uous as functions of the values of the marginal distributions, providing additional
examples for which the standard bootstrap with the same sample size may not
be asymptotically valid. The failure of the standard bootstrap (bootstrap with the
same sample size) in nonregular cases has been pointed out in Andrews (2000),
Bickel, Götze, and van Zwet (1997), Beran (1997), and the references therein.
Subsampling and fewer-than-n bootstrap have been proposed to rectify the failure
of the standard bootstrap; see Andrews (2000), Bickel et al. (1997), Beran (1997),
and Politis, Romano, and Wolf (1999) for discussion and references. In this paper,
we apply the fewer-than-n bootstrap (Bickel et al. 1997; Bickel and Sakov, 2008)
to construct confidence intervals for these sharp bounds. The finite sample perfor-
mances of the confidence intervals based on the standard normal critical values,
the standard bootstrap with the same sample size, and the fewer-than-n bootstrap
are compared in a simulation study.

Given sharp bounds on the distribution of treatment effects, we obtain bounds
on the class of D-parameters introduced in Manski (1997a). One example of a
D-parameter is any quantile of the treatment effect distribution. In addition, we
obtain sharp bounds on the class of D2-parameters of the treatment effect dis-
tribution; see Stoye (2009) or Section 2 for the definition of a D2-parameter. As
pointed out in Stoye (2009), many inequality and risk measures are D2-parameters.
These results shed light on the relation and distinction between QTE and the quan-
tile of the treatment effect distribution.
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934 YANQIN FAN AND SANG SOO PARK

As an initial investigation of a unified approach to bounding or partially identi-
fying the distribution of treatment effects, this paper has focused on randomized
experiments. Numerous extensions of the methodologies developed in this paper
are possible and worthwhile. Of immediate concern is the incorporation of covari-
ates into the analysis. We extend sharp bounds in Williamson and Downs (1990) to
take into account the presence of covariates under the selection-on-observables as-
sumption commonly used in the treatment effect literature; see, e.g., Rosenbaum
and Rubin (1983a, 1983b), Hahn (1998), Heckman, Ichimura, Smith, and Todd
(1998), and Dehejia and Wahba (1999), among others. In general, taking into
account observable covariates tightens the bounds.1

The rest of this paper is organized as follows: In Section 2, we review sharp
bounds on the distribution of a difference of two random variables and provide
bounds on parameters of the treatment effect distribution that respect either first-
or second-order stochastic dominance.2 In Section 3, we propose nonparametric
estimators of the distribution bounds and establish their asymptotic properties.
Results from a detailed simulation study are provided in Section 4. Section 5
provides sharp bounds on the treatment effect distribution when covariates are
available. Section 6 concludes and discusses interesting extensions. Proofs are
collected in the Appendix.

Throughout the paper, we use =⇒ to denote weak convergence. All the limits
are taken as the sample size goes to ∞.

2. SHARP BOUNDS ON THE DISTRIBUTION OF TREATMENT
EFFECTS AND BOUNDS ON ITS D-PARAMETERS

We consider a binary treatment with continuous outcomes and use Y1 to denote
the potential outcome from receiving treatment and Y0 the outcome without treat-
ment. Both Y1 and Y0 are one-dimensional. Let F( y1, y0) denote the joint distri-
bution of Y1,Y0 with marginals F1(·) and F0(·), respectively.

The characterization theorem of Sklar (1959) implies that there exists a copula3

C(u,v): (u,v) ∈ [0,1]2 such that F( y1, y0) = C(F1( y1), F0( y0)) for all y1, y0.
Conversely, for any marginal distributions F1(·), F0(·) and any copula function
C , the function C(F1( y1), F0( y0)) is a bivariate distribution function with given
marginal distributions F1, F0. This theorem provides the theoretical foundation
for the widespread use of the copula approach in generating multivariate distribu-
tions from univariate distributions. For reviews, see Joe (1997) and Nelsen (1999).

For (u,v) ∈ [0,1]2, let C L(u,v) = max(u +v −1,0) and CU (u,v) = min(u,v)
denote the Fréchet-Hoeffding lower and upper bounds for a copula, i.e., C L(u,v)
≤ C(u,v) ≤ CU (u,v). Then, for any ( y1, y0), the following inequality holds:

C L(F1( y1), F0( y0)) ≤ F( y1, y0) ≤ CU (F1( y1), F0( y0)). (1)

The bivariate distribution functions C L(F1( y1), F0( y0)) and CU (F1( y1), F0( y0))
are referred to as the Fréchet-Hoeffding lower and upper bounds for bivariate
distribution functions with fixed marginal distributions F1 and F0. They are
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THE DISTRIBUTION OF TREATMENT EFFECTS 935

distributions of perfectly negatively dependent and perfectly positively dependent
random variables, respectively; see Nelsen (1999) for more discussion.

Heckman and Smith (1993), Heckman et al. (1997), and Manski (1997b) ap-
plied (1) in the context of program evaluation. Lee (2002) applied (1) to bound
correlation coefficients in sample selection models.

2.1. Sharp Bounds on the Distribution of Treatment Effects

Let � = Y1 −Y0 denote the treatment effect or outcome gain and F�(·) its distri-
bution function. Given the marginals F1 and F0, sharp bounds on the distribution
of � can be found in Williamson and Downs (1990).

Lemma 2.1. Let F L(δ) = supy max(F1( y) − F0( y − δ),0) and FU (δ) = 1 +
infy min(F1( y)− F0( y − δ),0). Then F L(δ) ≤ F�(δ) ≤ FU (δ).

We note the following alternative expressions for F L(δ) and FU (δ) :

F L(δ) = max
(

sup
y

{F1( y)− F0( y − δ)} ,0
)
,

FU (δ) = 1+min
(

inf
y

{F1( y)− F0( y − δ)} ,0
)
. (2)

At any given value of δ, the bounds (F L(δ), FU (δ)) are informative on the value
of F�(δ) as long as [F L(δ), FU (δ)] ⊂ [0,1]. Viewed as an inequality among all
possible distribution functions, the sharp bounds F L(δ) and FU (δ) cannot be
improved, because it is easy to show that if either F1 or F0 is the degenerate
distribution at a finite value, then for all δ, we have F L(δ) = F�(δ) = FU (δ).
In fact, given any pair of distribution functions F1 and F0, the inequality F L(δ) ≤
F�(δ) ≤ FU (δ) cannot be improved; that is, the bounds F L(δ) and FU (δ) for
F�(δ) are pointwise best-possible; see Frank et al. (1987) for a proof of this for a
sum of random variables and Williamson and Downs (1990) for a general opera-
tion on two random variables.

Lemma 2.1 implies that the treatment effect distribution F� first-order sto-
chastically dominates FU and is first-order stochastically dominated by F L . Let
�F SD denote the first-order stochastic dominance relation. Then F L �F SD

F��F SD FU . We note that unlike sharp bounds on the joint distribution of Y1,Y0,
sharp bounds on the distribution of � are not reached at the Fréchet-Hoeffding
lower and upper bounds for the distribution of Y1,Y0.

Let Y ′
1,Y ′

0 be perfectly positively dependent and have the same marginal dis-
tributions as Y1,Y0, respectively. Let �′ = Y ′

1 −Y ′
0. Then the distribution of �′ is

given by

F�′(δ) = E1{Y ′
1 −Y ′

0 ≤ δ} =
∫ 1

0
1
{

F−1
1 (u)− F−1

0 (u) ≤ δ
}

du,

where 1{·} is the indicator function the value of which is 1 if the argument is true,
0 otherwise. Similarly, let Y ′′

1 ,Y ′′
0 be perfectly negatively dependent and have the
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936 YANQIN FAN AND SANG SOO PARK

same marginal distributions as Y1,Y0, respectively. Let �′′ = Y ′′
1 − Y ′′

0 . Then the
distribution of �′′ is given by

F�′′(δ) = E1{Y ′′
1 −Y ′′

0 ≤ δ} =
∫ 1

0
1
{

F−1
1 (u)− F−1

0 (1−u) ≤ δ
}

du.

Interestingly, we show in the next lemma that there exists a second-order stocha-
stic dominance relation among the three distributions F�, F�′ , F�′′ . Let �SSD

denote the second-order stochastic dominance relation.

Lemma 2.2. Let F�, F�′ , F�′′ be defined as above. Then F�′ �SSD F� �SSD

F�′′ .

Theorem 1 in Stoye (2009) (see also Tesfatsion, 1976) shows that F�′ �SSD

F� is equivalent to E
[
U (�′)

] ≤E[U (�)] or E
[
U (Y ′

1 −Y ′
0)
] ≤E[U (Y1 −Y0)] for

every convex real-valued function U . Corollary 2.3 in Tchen (1980) and Lemma
2.1 imply the conclusion of Lemma 2.2; see also Cambanis, Simons, and Stout
(1976).

2.2. Bounds on D -Parameters

The sharp bounds on the treatment effect distribution imply bounds on the class of
D-parameters introduced in Manski (1997a); see also Manski (2003). One exam-
ple of D-parameters is any quantile of the distribution. Stoye (2009) introduced
another class of parameters that measure the dispersion of a distribution, includ-
ing the variance of the distribution. In this section, we show that sharp bounds
can be placed on any dispersion or spread parameter of the treatment effect distri-
bution in this class. For convenience, we restate the definitions of both classes of
parameters from Stoye (2009). He refers to the class of D-parameters as the class
of D1-parameters.

DEFINITION 2.1. A population statistic θ is a D1-parameter if it increases
weakly with first-order stochastic dominance; that is, F �F SD G implies θ(F) ≥
θ(G).

Obviously, if θ is a D1-parameter, then Lemma 2.1 implies θ(F L) ≥ θ(F�) ≥
θ(FU ). In general, the bounds θ(F L),θ(FU ) on a D1-parameter may not be
sharp, as the bounds in Lemma 2.1 are pointwise sharp but not uniformly sharp;
see Firpo and Ridder (2008) for a detailed discussion on this issue. In the spe-
cial case where θ is a quantile of the treatment effect distribution, the bounds
θ(F L),θ(FU ) are known to be sharp and can be expressed in terms of the quan-
tile functions of the marginal distributions of the potential outcomes. Specifi-
cally, let G−1(u) denote the generalized inverse of a nondecreasing function G;
that is, G−1(u) = inf{x |G(x) ≥ u} . Then Lemma 2.1 implies, for 0 ≤ q ≤ 1,
(FU )−1(q) ≤ F−1

� (q) ≤ (F L)−1(q), and the bounds are known to be sharp.
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THE DISTRIBUTION OF TREATMENT EFFECTS 937

Lemma 2.3. For 0 ≤ q ≤ 1, (FU )−1(q) ≤ F−1
� (q) ≤ (F L)−1(q), where

(F L)−1 (q) =
{

infu∈[q,1][F−1
1 (u)− F−1

0 (u −q)] if q 
= 0

F−1
1 (0)− F−1

0 (1) if q = 0,

(FU )−1(q) =
{

supu∈[0,q][F−1
1 (u)− F−1

0 (1+u −q)] if q 
= 1

F−1
1 (1)− F−1

0 (0) if q = 1.

For the quantile function of a distribution of a sum of two random variables,
expressions for its sharp bounds in terms of quantile functions of the marginal
distributions are first established in Makarov (1981). They can also be established
via the duality theorem; see Schweizer and Sklar (1983). Using the same tool,
one can establish the expressions for sharp bounds on the quantile function of
the distribution of treatment effects in Lemma 2.3; see Williamson and Downs
(1990). Like sharp bounds on the distribution of treatment effects, sharp bounds
on the quantile function of � are not reached at the Fréchet-Hoeffding bounds for
the distribution of (Y1,Y0). The following lemma provides simple expressions for
the quantile functions of treatment effects when the potential outcomes are either
perfectly positively dependent or perfectly negatively dependent.

Lemma 2.4. For q ∈ [0,1], we have (i) F−1
�′ (q) = [F−1

1 (q) − F−1
0 (q)

]
if
[
F−1

1 (q)− F−1
0 (q)

]
is an increasing function of q; (ii) F−1

�′′ (q) = [F−1
1 (q)−

F−1
0 (1−q)

]
.

The proof of Lemma 2.4 follows that of Proposition 3.1 in Embrechts et al.
(2003). In particular, they showed that for a real-valued random variable Z and a
function ϕ increasing and left-continuous on the range of Z , it holds that the quan-
tile of ϕ(Z) at quantile level q is given by ϕ

(
F−1

Z (q)
)
, where FZ is the distribution

function of Z . For (i), we note that F−1
�′ (q) equals the quantile of

[
F−1

1 (U ) −
F−1

0 (U )
]
, where U is a uniform random variable on [0,1]. Let ϕ(U ) = F−1

1 (U )−
F−1

0 (U ). Then F−1
�′ (q) = ϕ(q) = F−1

1 (q) − F−1
0 (q), provided that ϕ(U ) is an

increasing function of U . For (ii), let ϕ(U )= F−1
1 (U )−F−1

0 (1−U ). Then F−1
�′′ (q)

equals the quantile of ϕ(U ). Since ϕ(U ) is always increasing in this case, we get
F−1

�′′ (q) = ϕ(q).
Note that the condition in (i) is a necessary condition; without this condi-

tion,
[
F−1

1 (q)− F−1
0 (q)

]
can fail to be a quantile function. Doksum (1974) and

Lehmann (1974) used
[
F−1

1 (F0( y0))− y0
]

to measure treatment effects. Recently,[
F−1

1 (q)− F−1
0 (q)

]
has been used to study treatment effects heterogeneity and is

referred to as the QTE; see, e.g., Heckman et al. (1997), Abadie et al. (2002),
Chernozhukov and Hansen (2005), Firpo (2007), and Imbens and Newey (2005),
among others, for more discussion and references on the estimation of QTE.
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938 YANQIN FAN AND SANG SOO PARK

Manski (1997a) referred to QTE as �D-parameters and the quantile of the treat-
ment effect distribution as D�-parameters. Assuming monotone treatment re-
sponse, Manski (1997a) provided sharp bounds on the quantile of the treatment
effect distribution.

It is interesting to note that Lemma 2.4(i) shows that QTE equals the quantile
function of the treatment effects only when the two potential outcomes are per-
fectly positively dependent AND QTE is increasing in q. In general, the quantile
of the treatment effect distribution is different from QTE and is not identified, but
it can be bounded; see Lemma 2.3.

DEFINITION 2.2. A population statistic θ is a D2-parameter if it increases
weakly with second-order stochastic dominance, i.e., F �SSD G implies θ(F) ≥
θ(G).

If θ is a D2-parameter, then Lemma 2.2 implies θ(F�′) ≤ θ(F�) ≤ θ(F�′′).
Stoye (2009) defined the class of D2-parameters in terms of mean-preserving
spread. Since the mean of � is identified in our context, the two definitions lead to
the same class of D2-parameters. In contrast to bounds on D1-parameters of the
treatment effect distribution implied by Lemma 2.1, bounds on D2-parameters:
θ(F�′),θ(F�′′) are sharp and are reached when the potential outcomes are per-
fectly dependent on each other; see Cambanis et al. (1976). For a general func-
tional of F�, Firpo and Ridder (2008) investigated the possibility of obtaining its
bounds that are tighter than the bounds implied by F L , FU . Here we point out
that for the class of D2-parameters of F�, their sharp bounds are available. One
example of a D2-parameter is the variance of the treatment effect �. Using re-
sults in Cambanis et al. (1976), Heckman et al. (1997) provided sharp bounds on
the variance of � and proposed a test for the common effect model by testing
the value of the lower bound of the variance of �. Stoye (2009) presents many
other examples of D2-parameters, including many well-known inequality and risk
measures.

3. NONPARAMETRIC ESTIMATORS AND THEIR
ASYMPTOTIC PROPERTIES

Suppose random samples {Y1i }n1
i=1 ∼ F1 and {Y0i }n0

i=1 ∼ F0 are available. Let Y1

and Y0 denote, respectively, the supports4 of F1 and F0. Note that the bounds in
Lemma 2.1 can be written as

F L(δ) = sup
y∈R

{F1( y)− F0( y − δ)} , FU (δ) = 1+ inf
y∈R

{F1( y)− F0( y − δ)} ,
(3)

since for any two distributions F1 and F0, it is always true that supy∈R{F1( y)−
F0( y − δ)} ≥ 0 and infy∈R {F1( y)− F0( y − δ)} ≤ 0.
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When Y1 = Y0 = R, (3) suggests the following plug-in estimators of F L(δ)
and FU (δ):

F L
n (δ) = sup

y∈R
{F1n( y)− F0n( y−δ)}, FU

n (δ) = 1+ inf
y∈R

{F1n( y)− F0n( y−δ)},
(4)

where F1n(·) and F0n(·) are the empirical distributions defined as

Fkn( y) = 1

nk

nk

∑
i=1

1{Yki ≤ y} , k = 1,0.

When either Y1 or Y0 is not the whole real line, we provide alternative expres-
sions for F L(δ) and FU (δ) below, which turn out to be convenient for both com-
putational purposes and for asymptotic analysis. Suppose Y1 = [a,b] and Y0 =
[c,d] for a,b,c,d ∈R≡R∪{−∞,+∞} , a < b,c < d with F1 (a) = F0 (c) = 0
and F1 (b) = F0 (d) = 1. It is easy to see that

F L(δ) = FU (δ) = 0, if δ ≤ a −d and F L(δ) = FU (δ) = 1, if δ ≥ b − c.

For any δ ∈ [a −d,b − c]
⋂R, let Yδ = [a,b]

⋂
[c + δ,d + δ]. Then

F L(δ) = max

{
sup
y∈Yδ

{F1( y)− F0( y − δ)} ,0

}
,

FU (δ) = 1+min

{
inf

y∈Yδ

{F1( y)− F0( y − δ)} ,0

}
,

which suggest the following plug-in estimators of F L(δ) and FU (δ):

F L
n (δ) = max

{
sup
y∈Yδ

{F1n( y)− F0n( y − δ)} ,0

}
,

FU
n (δ) = 1+min

{
inf

y∈Yδ

{F1n( y)− F0n( y − δ)} ,0

}
.

For any fixed δ, the consistency of F L
n (δ) and FU

n (δ) is obvious. By using
F L

n (δ) and FU
n (δ), we can provide bounds on effects of interest other than the av-

erage treatment effects, including the proportion of people receiving the treatment
who benefit from it; see Heckman et al. (1997) for discussion on some of these
effects.

In the rest of this section, we will establish the asymptotic distributions of√
n1
(

F L
n (δ)− F L(δ)

)
and

√
n1
(

FU
n (δ)− FU (δ)

)
. Define

ysup,δ ∈ arg sup
y∈Yδ

{F1( y)− F0( y − δ)} , yinf,δ ∈ arg inf
y∈Yδ

{F1( y)− F0( y − δ)} ,
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940 YANQIN FAN AND SANG SOO PARK

M(δ) = sup
y∈Yδ

{F1( y)− F0( y − δ)} , m(δ) = inf
y∈Yδ

{F1( y)− F0( y − δ)} ,

Mn(δ) = sup
y∈Yδ

{F1n( y)− F0n( y − δ)} , mn(δ) = inf
y∈Yδ

{F1n( y)− F0n( y − δ)} .

Then

F L
n (δ) = max{Mn(δ),0} , FU

n (δ) = 1+min{mn(δ),0} .
We make the following assumptions.

Assumption 1. (i) The two samples {Y1i }n1
i=1 and {Y0i }n0

i=1 are each i.i.d. and
are independent of each other; (ii) n1/n0 → λ as n1 → ∞ with 0 < λ < ∞.

Assumption 2. The distribution functions F1 and F0 are twice differentiable
with bounded density functions f1 and f0 on their supports.

Assumption 3. For a fixed δ ∈ [a −d,b − c]
⋂R, the function y �−→

F1( y) − F0( y − δ) has a unique, well-separated interior maximum at ysup,δ

on Yδ .

Assumption 4. For a fixed δ ∈ [a −d,b − c]
⋂R, the function y �−→

F1( y) − F0( y − δ) has a unique, well-separated interior minimum at yinf,δ on
Yδ .

We note that the uniqueness condition in Assumptions 3 and 4 can be restrictive
and can be relaxed. We first establish the asymptotic distributions of Mn(δ) and
mn(δ).

PROPOSITION 3.1. Suppose Assumptions 1 and 2 hold. For a given δ, let

σ 2
L = F1( ysup,δ)

[
1− F1( ysup,δ)

]+λF0( ysup,δ − δ)
[
1− F0( ysup,δ − δ)

]
and

σ 2
U = F1( yinf,δ)

[
1− F1( yinf,δ)

]+λF0( yinf,δ − δ)
[
1− F0( yinf,δ − δ)

]
.

(i) If Assumption 3 also holds, then
√

n1[Mn(δ)− M(δ)] =⇒ N (0,σ 2
L);

(ii) if Assumption 4 also holds, then
√

n1[mn(δ)−m(δ)] =⇒ N (0,σ 2
U ).

Theorem 3.2 follows from Proposition 3.1.

THEOREM 3.2.

(i) Suppose Assumptions 1–3 hold. For any δ ∈ [a −d,b − c]
⋂

R,

√
n1[F L

n (δ)− F L(δ)] =⇒
{

N (0,σ 2
L), if M(δ) > 0;

max
{

N (0,σ 2
L),0
}

if M(δ) = 0;
and Pr

(
F L

n (δ) = 0
)

→ 1 if M(δ) < 0.
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(ii) Suppose Assumptions 1, 2, and 4 hold. For any δ ∈ [a −d,b − c]
⋂

R,

√
n1[FU

n (δ)− FU (δ)] =⇒
{

N
(
0,σ 2

U

)
, if m(δ) < 0;

min
{

N
(
0,σ 2

U

)
,0
}

if m(δ) = 0;
and Pr

(
FU

n (δ) = 1
)

→ 1 if m(δ) > 0.

Theorem 3.2 shows that the asymptotic distribution of F L
n (δ) (FU

n (δ)) depends
on the value of M(δ) (m(δ)). For example, if δ is such that M(δ) > 0 (m(δ) < 0),
then F L

n (δ) (FU
n (δ)) is asymptotically normally distributed, but if δ is such that

M(δ) = 0 (m(δ) = 0), then the asymptotic distribution of F L
n (δ) (FU

n (δ)) is trun-
cated normal.

4. SIMULATION

In this section, we investigate the coverage rates of the asymptotic normal, the
standard bootstrap, and the fewer-than-n bootstrap confidence intervals for F L(δ)
and FU (δ) for δ values corresponding to ysup,δ (yinf,δ) being an interior solution
with M(δ) > 0 and M(δ) = 0 (m(δ) < 0 and m(δ) = 0). To implement the fewer-
than-n bootstrap, we need to choose the subsample size. We use the procedure
suggested in Bickel and Sakov (2008). Let m denote the subsample size and m̂
the value of m chosen by the procedure in Bickel and Sakov (2008) (see below
for a detailed description of this procedure applied to our case). As shown by
Bickel and Sakov (2008), m̂ has the desirable property that under general regu-
larity conditions, when the standard bootstrap fails, m̂ → ∞ in probability and
m̂/n = op(1); and when the standard bootstrap works, m̂/n = Op(1). As a result,
there is no loss in efficiency in using the fewer-than-n bootstrap with this adaptive
rule of choosing the subsample size. On the other hand, subsampling requires a
strictly smaller subsample size.

We now describe this rule for the lower bound F L(δ). For notational clarity,
we consider the case n1 = n0. Let {Y ∗

1i }m
i=1 be i.i.d. from F1n(·) and {Y ∗

0i }m
i=1 i.i.d.

from F0n(·) where m ≤ n. Denote the bootstrap estimators of the sharp bounds
by F∗L

m,n(δ) and F∗U
m,n(δ) and the bootstrap estimators of σ 2

L and σ 2
U by σ̂ 2∗

m,L and

σ̂ 2∗
m,U . Let T ∗LT

m,n = √
m
(

F∗L
m,n(δ)− F L

n (δ)
)
/σ̂ ∗

m,L . To choose m, we follow the
steps below.

Step 1. Consider a sequence of m’s of the form mj = [q j n
]

for j = 0,1,2, . . . ,
0 < q < 1, where [γ ] denotes the largest integer ≤ γ.

Step 2. For each mj , let L∗
mj ,n denote the empirical distribution of values of

T ∗LT
m,n over a large number (B) of bootstrap repetitions.

Step 3. Let m̂ = argminmj

(
supx

{∣∣∣L∗
mj ,n (x)− L∗

mj+1,n (x)
∣∣∣}) .
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942 YANQIN FAN AND SANG SOO PARK

Once m̂ is chosen, the confidence intervals can be constructed in the usual
way. For example, the 100∗(1−α)% two-sided equal-tailed bootstrap confidence
interval for F L(δ) is[
F L

n (δ)− 1

n

cm̂,(1−α/2)

σ̂L
, F L

n (δ)+ 1

n

cm̂,α/2

σ̂L

]
,

where cm,β = inf
{

x : L∗
m,n (x) ≥ β

}
.

The true marginal distributions and the values of δ used in the simulation are
summarized in Table 1. In Example 1, Y1 ∼ N

(
μ1,σ

2
1

)
and Y0 ∼ N

(
μ0,σ

2
0

)
.

When5 σ1 
= σ0, we get

M(δ) = �

(
σ1s −σ0t

σ 2
1 −σ 2

0

)
+�

(
σ1t −σ0s

σ 2
1 −σ 2

0

)
−1,

m(δ) = �

(
σ1s +σ0t

σ 2
1 −σ 2

0

)
−�

(
σ1t +σ0s

σ 2
1 −σ 2

0

)
+1,

where s = δ − (μ1 −μ0) and t =
√

s2 + (σ 2
1 −σ 2

0

)
ln

(
σ 2

1
σ 2

0

)
. For any δ, one can

show that M (δ) > 0 and m(δ) < 0. Hence the standard bootstrap works for all
δ’s. The values of δ are chosen such that F L (δ1) ≈ FU (δ1) ≈ 0.15, F L (δ2) ≈
FU (δ2) ≈ 0.5, and F L (δ3) ≈ FU (δ3) ≈ 0.85 to see the effect of the relative
position of δ on the coverage rates.

For a ∈ (0,1), let C (a) denote the distribution with distribution function given
by:

F(x) =

⎧⎪⎨⎪⎩
1

a
x2 if x ∈ [0,a]

1− (x −1)2

(1−a)
if x ∈ [a,1]

.

In Example 2, for the lower bound, we choose Y1 ∼ C
( 1

4

)
and Y0 ∼ C

( 3
4

)
. When

δ = 1 −
√

6
2 , one can show that M(δ) = 0, ysup,δ = 1 −

√
6

4 is in the interior, and

TABLE 1. DGPs used in the simulation

Marginal distributions δ

Estimators for F1 F0 δ1 δ2 δ3

Example 1 F L (δ) N (2,2) N (1,1) 1.3 2.6 4.5
FU (δ) N (2,2) N (1,1) −2.4 −0.6 0.7

Example 2 F L (δ) C
(

1
4

)
C
(

3
4

)
1
8 1−

√
6

2 ·
FU (δ) C

(
3
4

)
C
(

1
4

)
− 1

8

√
6

2 −1 ·
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f ′
1

(
ysup,δ

)− f ′
0

(
ysup,δ − δ

) = −16/3 < 0. Theorem 3.2 implies that at δ = 1 −√
6/2, the asymptotic distribution of F L

n (δ) is truncated normal. When δ = 1/8,
ysup,δ = 9/16, M(δ) = 47/96 > 0, f ′

1

(
ysup,δ

)− f ′
0

(
ysup,δ − δ

) = −16/3 < 0.

Theorem 3.2 implies that when δ = 1
8 , the asymptotic distribution of F L

n (δ) is
normal. For the upper bound FU (δ), we choose Y1 ∼ C(3/4) and Y0 ∼ C(1/4).
Similarly to the lower bound case, we show that when δ = √

6/2−1, the asymp-
totic distribution of FU

n (δ) is truncated normal, and when δ = −1/8, the asymp-
totic distribution of FU

n (δ) is normal.
For each data generating process (DGP) described in Table 1, we generate ran-

dom samples of the same size n from F1 and F0 respectively. The sample sizes
are n = 1,000,2,000,4,000, and the number of simulations is 1,000. To select the
number of bootstrap repetitions B, we follow Davidson and Mackinnon (2004;
pp. 163–165) by choosing B such that α(B + 1) is an integer. Specifically, we
use B = 999 for α = 0.05. For Example 1, we construct confidence intervals for
F L(δ) and FU (δ) for each δ by three methods. The first is the confidence interval
based on the standard normal distribution. We denote the corresponding results by
“Asymptotics” in Table 2 below. The second method uses the standard bootstrap
confidence intervals and the results are denoted by “n-bootstrap” in Table 2. Fi-
nally, we use the fewer-than-n bootstrap confidence intervals. In the fewer-than-
n bootstrap, we use q = 0.95. Here only one value for q is used, because the
fewer-than-n bootstrap is only used for comparison purposes (the standard boot-
strap works for this case). For Example 2, we use the standard normal distribution
(“Asymptotics” in Table 3), the standard bootstrap (“n-bootstrap” in Table 3), and
the fewer-than n bootstrap with two values for q: 0.75 and 0.95.

First, we discuss the coverage rates for normal distributions in Table 2. Clearly
the coverage rates depend critically on the location of δ. For δ2, all three meth-
ods lead to confidence intervals with very accurate coverage rates for both F L

TABLE 2. Coverage rates: (N (2,2), N (1,1))

F L (δ) FU (δ)

n Method δ1 δ2 δ3 δ1 δ2 δ3

1,000 Asymptotics .929 .944 .937 .931 .949 .926
n-bootstrap .942 .954 .950 .950 .953 .939

q = 0.95 Fewer-than-n bootstrap .948 .949 .948 .952 .951 .942

2,000 Asymptotics .942 .944 .934 .943 .946 .927
n-bootstrap .949 .944 .946 .946 .952 .937

q = 0.95 Fewer-than-n bootstrap .941 .944 .952 .949 .950 .939

4,000 Asymptotics .935 .953 .936 .949 .949 .928
n-bootstrap .945 .957 .953 .951 .952 .936

q = 0.95 Fewer-than-n bootstrap .944 .957 .952 .951 .952 .939
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944 YANQIN FAN AND SANG SOO PARK

TABLE 3. Coverage rates: (C(1/4),C(3/4)) for F L ; (C(3/4),C(1/4)) for FU

F L (δ) FU (δ)

n Method δ1 δ2 δ1 δ2

1,000 Asymptotics .933 .935 .947 .935
n-bootstrap .941 .961 .951 .958
Fewer-than-n bootstrap (q = 0.75) .943 .963 .951 .960
Fewer-than-n bootstrap (q = 0.95) .945 .963 .947 .962

2,000 Asymptotics .952 .955 .940 .940
n-bootstrap .951 .970 .947 .959
Fewer-than-n bootstrap (q = 0.75) .944 .971 .946 .959
Fewer-than-n bootstrap (q = 0.95) .951 .969 .946 .959

4,000 Asymptotics .948 .944 .952 .946
n-bootstrap .947 .963 .946 .963
Fewer-than-n bootstrap (q = 0.75) .949 .964 .947 .965
Fewer-than-n bootstrap (q = 0.95) .949 .962 .951 .961

and FU . The coverage rates at δ1 and δ3 depend on the methods being used. Al-
though in theory all three methods are asymptotically valid, in finite samples, con-
fidence intervals based on normal critical values often substantially under-cover
the true values at δ1 and/or δ3. For example, the coverage rates of confidence in-
tervals based on normal critical values for F L(δ) at δ = δ1 and δ3 are, respectively,
.929 and .937 when n = 1,000 and .935 and .936 when n = 4,000. On the other
hand, the standard bootstrap leads, respectively, to coverage rates of .942 and .950
when n = 1,000 and .945 and .953 when n = 4,000, supporting the asymptotic
refinement of the standard bootstrap over asymptotic normality in this case. The
fewer-than-n bootstrap delivers similar coverage rates to the standard bootstrap.

For Example 2, all three methods—the Asymptotics based on normal critical
values, the n-bootstrap, and the fewer-than-n bootstrap with different values of
q—perform similarly at δ1, except that when n = 1,000, the Asymptotics under-
covers for F L(δ1) with coverage rate .933. At δ2, the n-bootstrap leads to coverage
rates higher than .95 for almost all sample sizes, while the fewer-than-n bootstrap
produces coverage rates that are slightly better than the n-bootstrap, but not by
much. On the other hand, the Asymptotics provides coverage rates that are closer
to .95 except when n = 1,000.

5. SHARP BOUNDS ON THE DISTRIBUTION OF
TREATMENT EFFECTS WITH COVARIATES

In many applications, observations on a vector of covariates for individuals in the
treatment and control groups are available. In this section, we extend our study on
sharp bounds to take into account these covariates. For notational compactness,
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we let n = n1 +n0, so that there are n individuals altogether. For i = 1, . . . ,n, let
Xi denote the observed vector of covariates and Di the binary variable indicating
participation; Di = 1 if individual i belongs to the treatment group and Di = 0
if individual i belongs to the control group. Let Yi = Y1i Di +Y0i (1− Di ) denote
the observed outcome for individual i . We have a random sample {Yi , Xi , Di }n

i=1 .
In the literature on program evaluation with selection-on-observables, the follow-
ing two assumptions are often used to evaluate the effect of a treatment or pro-
gram; see e.g., Rosenbaum and Rubin (1983a,1983b), Hahn (1998), Heckman
et al. (1998), Dehejia and Wahba (1999), and Hirano, Imbens, and Ridder (2003),
to name only a few.

Assumption C1. Let (Y1,Y0, D, X) have a joint distribution. For all x ∈X (the
support of X ), (Y1,Y0) is jointly independent of D conditional on X = x .

Assumption C2. For all x ∈ X , 0 < p(x) < 1, where p(x) = P (D = 1|x).

In the following, we present sharp bounds on the distribution of � under
Assumptions C1 and C2. For any fixed x ∈X , Lemma 2.1 provides sharp bounds
on the conditional distribution of � given X = x : F L(δ|x) ≤ F�(δ|x) ≤ FU (δ|x),
where

F L(δ|x) = sup
y

max(F1( y|x)− F0( y − δ|x),0),

FU (δ|x) = 1+ inf
y

min(F1( y|x)− F0( y − δ|x),0).

Here, we use F�(·|x) to denote the conditional distribution function of � given
X = x . The other conditional distributions are defined similarly. Assumptions C1
and C2 allow the identification of the conditional distributions F1( y|x) and F0( y|x)
appearing in the sharp bounds on F�(δ|x). To see this, note that

F1( y|x) = P(Y1 ≤ y|X = x) = P(Y1 ≤ y|X = x, D = 1)

= P(Y ≤ y|X = x, D = 1), (5)

where Assumption C1 is used to establish the second equality. Similarly, we get

F0( y|x) = P(Y ≤ y|X = x, D = 0). (6)

Given the random sample {Yi , Xi , Di }n
i=1 , nonparametric estimators of the

bounds F L(δ|x), FU (δ|x) can be constructed easily from nonparametric estima-
tors of F1( y1|x) and F0( y0|x). Sharp bounds on the unconditional distribution
of � follow from those of the conditional distribution:

E
(

F L(δ|X)
)

≤ F�(δ) = E(F�(δ|X)) ≤ E
(

FU (δ|X)
)

.
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946 YANQIN FAN AND SANG SOO PARK

We note that if X is independent of (Y1,Y0), then the above bounds on F�(δ)
reduce to those in Lemma 2.1. In general, X is not independent of (Y1,Y0), and
the above bounds are tighter than those in Lemma 2.1.

6. CONCLUSION AND EXTENSIONS

This paper is the first to study nonparametric estimation and inference for sharp
bounds on the distribution of a difference between two random variables. In the
context of program evaluation or evaluation of a binary treatment, the difference
between the two potential outcomes measures the program effect or effect of the
treatment and hence plays an important role. As we mentioned in the Introduc-
tion, sharp bounds on the distribution of a sum are important in finance and risk
management. The results developed in this paper are directly applicable to a sum
of two random variables by redefining the second random variable.

Much work remains to be done. In terms of the sharp bounds, those in this
paper do not make use of any prior information on the possible dependence be-
tween the potential outcomes. When such information is available, these bounds
can be tightened. In a companion paper, we explore sharp bounds taking account
of dependence information such as values of dependence measures of the po-
tential outcomes. The focus on randomized experiments in this paper allows the
identification of the marginal distributions. In cases where the marginal distribu-
tions themselves are not identifiable but bounds on them can be placed (see, e.g.,
Manski, 1994, 2003; Manski and Pepper, 2000; Shaikh and Vytlacil, 2005;
Blundell, Gosling, Ichimura, and Meghir, 2007; Honore and Lleras-Muney, 2006),
we can also place bounds on the treatment effect distribution.

In terms of statistical inference, this paper looked at inference on the sharp
bounds themselves. The lower and upper bounds represent, respectively, the min-
imum and maximum probabilities that the treatment effects do not exceed a given
value. Inference on them should be useful in its own right. Alternatively, as initi-
ated in Horowitz and Manski (2000) and Imbens and Manski (2004), followed by
Chernozhukov, Hong, and Tamer (2007) and Romano and Shaikh (2008), among
others, one may construct confidence sets for the identified set or the true dis-
tribution instead of its bounds. The authors are currently investigating this issue
by using the general approach developed in Andrews and Guggenberger (2009,
2010) for nonregular problems.

NOTES

1. Independent of this paper, Firpo and Ridder (2008) also studied sharp bounds on the distribution
of treatment effects under the assumption of selection on observables and bounds on functionals of
the distribution of treatment effects.

2. Horowitz and Manski (1995) first used the concept of “respect stochastic dominance.” Manski
(1997a) referred to parameters that respect first-order stochastic dominance as D-parameters.

3. A copula is a bivariate distribution with uniform marginal distributions on [0,1].

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466609990168
Downloaded from https://www.cambridge.org/core. Bodleian Libraries of the University of Oxford, on 23 Mar 2022 at 11:41:54, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466609990168
https://www.cambridge.org/core


THE DISTRIBUTION OF TREATMENT EFFECTS 947

4. In practice, the supports of F1 and F0 may be unknown, but they can be estimated by using the
corresponding univariate order statistics in the usual way. This will not affect the results to follow. For
notational compactness, we assume that they are known.

5. Frank et al. (1987) provided expressions for the sharp bounds on the distribution of a sum of
two normal random variables. We believe there are typos in their expressions, as a direct application
of their expressions to our case would lead to different expressions from ours. They are

F L (δ) = �

(
−σ1s −σ0t

σ 2
0 −σ 2

1

)
+�

(
σ0s −σ1t

σ 2
0 −σ 2

1

)
−1,

FU (δ) = �

(
−σ1s +σ0t

σ 2
0 −σ 2

1

)
+�

(
σ0s +σ1t

σ 2
0 −σ 2

1

)
.
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Sklar A. (1959) Fonctions de réartition à n dimensions et leures marges. Publications de l’Institut de

Statistique de L’Université de Paris 8, 229–231.
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APPENDIX: Technical Proofs

Proof of Proposition 3.1. Since the proofs of (i) and (ii) are similar, we provide a
proof for (i) only. Let Qn( y,δ) = F1n( y)− F0n( y − δ), Q( y,δ) = F1( y)− F0( y − δ).
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Define ŷsup,δ ∈ argsupy Qn( y,δ). Then Mn(δ) = Qn( ŷsup,δ,δ) and M(δ) = Q( ysup,δ,δ).

Let Mn(δ) = Qn( ysup,δ,δ). Obviously,
√

n1
(

Mn(δ)− M(δ)
) =⇒ N

(
0,σ 2

L

)
. We will

complete the proof of (i) in three steps:

1. We show that ŷsup,δ − ysup,δ = op(1);
2. We show that ŷsup,δ − ysup,δ = Op(n−1/3

1 );
3.

√
n1 (Mn(δ)− M(δ)) has the same limiting distribution as

√
n1
(

Mn(δ)− M(δ)
)
.

Proof of Step 1. By the classical Glivenko-Cantelli theorem, the sequences supy |F1n( y)−
F1( y)| and supy |F0n( y − δ)− F0( y − δ)| converge in probability to zero. Consequently,
the sequence supy |[F1n( y)− F0n( y −δ)]−[F1( y)− F0( y − δ)

] | also converges in prob-
ability to zero. This and Assumption 3(i) imply that the sequence ŷsup,δ converges in prob-
ability to ysup,δ ; see, e.g., Theorem 5.7 in van der Vaart (1998).

Proof of Step 2. We use Theorem 3.2.5 in van der Vaart and Wellner (1996) to es-
tablish the rate of convergence for ŷsup,δ . Given Assumption 2, the map y �→ Q( y,δ) is
twice differentiable and has a maximum at ysup,δ . By Assumption 3, the first condition of
Theorem 3.2.5 in van der Vaart and Wellner (1996) is satisfied with α = 2. To check the
second condition of Theorem 3.2.5 in van der Vaart and Wellner (1996), we consider the
centered process:

√
n1(Qn−Q)(·,δ)=√

n1(F1n−F1)(·)−√
n1(F0n − F0)(·−δ)≡Gn1(·)−

√
n1√
n0

Gn0(·−δ).

For any η > 0,

E sup
|y−ysup,δ |<η

|√n1(Qn − Q)( y,δ)−√
n1(Qn − Q)( ysup,δ,δ)|

≤ E sup
|y−ysup,δ |<η

|Gn1( y)− Gn1
(

ysup,δ
) |

+
√

n0√
n1

E sup
|y−ysup,δ |<η

|Gn0 (y − δ)− Gn0
(

ysup,δ − δ
) |.

Note that the envelope function of the class of functions{
I {(−∞, y]}− I

{
(−∞, ysup,δ

}
: y ∈ [ysup,δ −η, ysup,δ +η]

}
is bounded by I

{
( ysup,δ −η, ysup,δ +η)

}
which has a squared L2-norm bounded by 2[

supy f1( y)
]
η. Since the class of functions I {Y1i ≤ ·} has a finite uniform entropy inte-

gral, Lemma 19.38 in van der Vaart (1998) implies:

E sup
|y−ysup,δ |<η

|Gn1( y)− Gn1
(

ysup,δ
) |� η1/2. (A.1)

Similarly, we can show that

E sup
|y−ysup,δ |<η

|Gn0 (y − δ)− Gn0
(

ysup,δ − δ
) |� η1/2. (A.2)
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Consequently,

E sup
|y−ysup,δ |<η

|√n1(Qn − Q)( y,δ)−√
n1(Qn − Q)( ysup,δ,δ)|� η1/2.

Hence the second condition of Theorem 3.2.5 in van der Vaart and Wellner (1996) is satis-

fied, leading to the rate of n−1/3
1 .

Proof of Step 3. For a fixed δ, we get

√
n1 (Mn(δ)− M(δ))

= √
n1
(

F1n( ŷsup,δ)− F0n( ŷsup,δ − δ)
)−√

n1
(

F1( ysup,δ)− F0( ysup,δ − δ)
)

= √
n1(Qn − Q)( ŷsup,δ,δ)+√

n1
(

F1( ŷsup,δ)− F0( ŷsup,δ − δ)
)

−√
n1
(

F1( ysup,δ)− F0( ysup,δ − δ)
)

= √
n1(Qn − Q)( ysup,δ,δ)+√

n1
[
F1( ŷsup,δ)

−F0( ŷsup,δ − δ)− F1( ysup,δ)+ F0( ysup,δ − δ)
]+op(1)

= √
n1
(

Mn(δ)− M(δ)
)+ 1

2
√

n1

{
f ′
1( y∗

sup,δ)− f ′
0( y∗

sup,δ − δ)
}

( ŷsup,δ − ysup,δ)
2

+op(1)

= √
n1
(

Mn(δ)− M(δ)
)+op(1),

where y∗
sup,δ lies between ŷsup,δ and ysup,δ and we have used stochastic equicontinuity of

the process
√

n1(Qn − Q)(·,δ) and the first-order condition for supy {F1( y)− F0( y − δ)}.
n
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