Instrumental Variables and Local Average Treatment Effects

Francis J. DiTraglia
University of Oxford
Treatment Effects: The Basics

Where have we been and where are we headed?

Lecture \#1

- If D is randomly assigned, it is straightforward to learn the ATE.
- If D is not randomly assigned, selection bias / confounding imply that $\mathbb{E}[Y \mid D=1]-\mathbb{E}[Y \mid D=0]$ usually doesn't tell us what we want to know.

Lecture \#2

- Even if D wasn't randomly assigned, perhaps there's no selection bias after we adjust for observed variables X. This is called selection on observables.
- Avoiding bad controls requires a causal model; DAGs help us reason about these.

Lectures \#3-5
When the selection-on-observables approach fails, is there anything else we could try?

Recall from Lecture \#2

Back-door Path

- A path between treatment and outcome starting with edge pointing into treatment.
- Back-door paths are non-causal: only edges pointing out from treatment represent causal effects.

Back-door Criterion

1. List all the paths that connect treatment and outcome.
2. Check which of them open. A path is open unless it contains a collider.
3. Check which of them are back-door paths: contain an arrow pointing at D.
4. If there are no open back-door paths, you're done. If not, look for nodes you can condition on to block remaining open back-door paths without opening new ones.

Exercise: If D and Z are binary, which statements are true?

1. $\mathbb{E}[Y \mid D=1]-\mathbb{E}[Y \mid D=0]=D \rightarrow Y$ causal effect
2. $\mathbb{E}[D \mid Z=1]-\mathbb{E}[D \mid Z=0]=Z \rightarrow D$ causal effect
3. $\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]=Z \rightarrow Y$ causal effect
4. We can learn the $D \rightarrow Y$ effect by conditioning on U.
5. We can learn the $D \rightarrow Y$ effect by conditioning on Z.

Solution: 1 and 5 are False, 2-4 are True ${ }^{1}$

1. $\mathbb{E}[Y \mid D=1]-\mathbb{E}[Y \mid D=0] \neq D \rightarrow Y$ causal effect
2. $\mathbb{E}[D \mid Z=1]-\mathbb{E}[D \mid Z=0]=Z \rightarrow D$ causal effect
3. $\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]=Z \rightarrow Y$ causal effect
4. We can learn the $D \rightarrow Y$ effect by conditioning on U.
5. We can't learn the $D \rightarrow Y$ effect by conditioning on Z.

- Conditioning on U blocks the backdoor path $D \leftarrow U \rightarrow Y$.
- No open backdoor paths between Z and D or between Z and Y.
- Conditioning on Z does not block the backdoor path $D \leftarrow U \rightarrow Y$.

[^0]In this DAG, Z is a so-called "Instrumental Variable"

Setting

- Want to learn the $D \rightarrow Y$ causal effect
- U represents unobserved causes of D and Y.
- Can't use selection on observables.

Relevance
Z and D are adjacent: Z causes D.

Exogeneity / Exclusion

Z and U are not adjacent and Z and Y are not adjacent.

Example: Effectiveness of Charter Schools

Research Question

Does attending a charter school increase math scores?
Unobserved Counfounders
U could include "ability", "grit", family background, etc.
What are we looking for?
Observed variable Z that causes charter school attendance but is unrelated to U and has no direct effect on math scores.

Clever Idea

When oversubscribed, some charter schools use a lottery to choose which students are admitted. Let $Z=1$ if a student wins the lottery.

Instrumental Variable Intuition

From our Warm-up Exercise:

- $\mathbb{E}[D \mid Z=1]-\mathbb{E}[D \mid Z=0]=Z \rightarrow D$ causal effect
- $\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]=Z \rightarrow Y$ causal effect
- Z only affects Y through its causal effect on D, which in turn affects Y.
- Therefore: $(Z \rightarrow Y$ effect $)=(Z \rightarrow D$ effect $) \times(D \rightarrow Y$ effect $)$.

$$
(D \rightarrow Y \text { effect })=\frac{(Z \rightarrow Y \text { effect })}{(Z \rightarrow D \text { effect })}=\frac{\mathbb{E}[Y \mid Z=1]-\mathbb{E}[Y \mid Z=0]}{\mathbb{E}[D \mid Z=1]-\mathbb{E}[D \mid Z=0]}
$$

The "Textbook" Linear, Homogeneous Effects Model

- Linear causal model with homogeneous treatment effects: $Y \leftarrow \alpha+\beta D+U$
- Model says that changing D has the same effect for everyone: increasing D by one unit increases Y by β units
- D doesn't have to be binary; if it is we can make a link with potential outcomes:

$$
\begin{array}{ll}
D=0 \Longrightarrow Y=\alpha+U & \Longrightarrow Y_{0}=\alpha+U \\
D=1 \Longrightarrow Y=(\alpha+\beta)+U & \Longrightarrow Y_{1}=(\alpha+\beta)+U
\end{array}
$$

- Therefore, if D is binary, $\beta=Y_{1}-Y_{0}$, a constant that is the same for everyone.
- Linearity isn't an extra assumption if D is binary
- Since $\beta=Y_{1}-Y_{0}$ is constant, it equals $\mathbb{E}\left(Y_{1}-Y_{0}\right) \equiv$ ATE.
- The next few slides assume you know a bit about linear regression.

Recall: Linear Regression and Exogeneity

Exogeneity

In the causal model $(Y \leftarrow \alpha+\beta D+U)$ we say that D is exogenous if $\operatorname{Cov}(D, U)=0$.
Population Linear Regression
The slope coefficient from a regression of Y on D is $\beta_{\mathrm{OLS}} \equiv \frac{\operatorname{Cov}(D, Y)}{\operatorname{Var}(D)}$.
Properties of Covariance

$$
\begin{array}{ll}
\operatorname{Cov}(X, W)=\operatorname{Cov}(W, X) & \operatorname{Cov}(a X+b, W)=a \operatorname{Cov}(X, W) \\
\operatorname{Cov}(X, X)=\operatorname{Var}(X) & \operatorname{Cov}(X, W+V)=\operatorname{Cov}(X, W)+\operatorname{Cov}(X, V)
\end{array}
$$

Therefore

$$
\beta_{\mathrm{OLS}} \equiv \frac{\operatorname{Cov}(D, Y)}{\operatorname{Var}(D)}=\frac{\operatorname{Cov}(D, \alpha+\beta D+U)}{\operatorname{Var}(D)}=\frac{\beta \operatorname{Cov}(D, D)+\operatorname{Cov}(D, U)}{\operatorname{Var}(D)}=\beta+\frac{\operatorname{Cov}(D, U)}{\operatorname{Var}(D)}
$$

If D is Exogenous and Binary, Linear Regression Gives the ATE

$$
\begin{gathered}
Y \leftarrow \alpha+\beta D+U, \quad \beta=Y_{1}-Y_{0}=\mathbb{E}\left(Y_{1}-Y_{0}\right) \equiv \mathrm{ATE} \\
\operatorname{Cov}(D, U)=0 \Longrightarrow \beta_{\mathrm{OLS}} \equiv \frac{\operatorname{Cov}(D, Y)}{\operatorname{Var}(D)}=\beta+\frac{\operatorname{Cov}(D, U)}{\operatorname{Var}(D)}=\beta=\mathrm{ATE}
\end{gathered}
$$

Wait a second. . .
How does this relate to $\mathrm{ATE}=\mathbb{E}[Y \mid D=1]-\mathbb{E}[Y \mid D=0]$ from Lecture \#1?

Recall: The Fundamental Decomposition

$$
\underbrace{\mathbb{E}(Y \mid D=1)-\mathbb{E}(Y \mid D=0)}_{\text {Observed Difference of Means }}=\underbrace{\mathbb{E}\left(Y_{1}-Y_{0} \mid D=1\right)}_{\text {TOT }}+\underbrace{\left[\mathbb{E}\left(Y_{0} \mid D=1\right)-\mathbb{E}\left(Y_{0} \mid D=0\right)\right]}_{\text {Selection Bias }}
$$

Homogeneous Effects Model

- $(Y \leftarrow \alpha+\beta D+U)$ equivalent to $Y_{0}=\alpha+U$ and $Y_{1}=(\alpha+\beta)+U$
- TOT $\equiv \mathbb{E}\left(Y_{1}-Y_{0} \mid D=1\right)=\mathbb{E}(\beta \mid D=1)=\beta=$ ATE
- $\mathbb{E}\left(Y_{0} \mid D=1\right)-\mathbb{E}\left(Y_{0} \mid D=0\right)=\mathbb{E}(\alpha+U \mid D=1)-\mathbb{E}(\alpha+U \mid D=0)$
- Hence, the fundamental decomposition becomes

$$
\mathbb{E}(Y \mid D=1)-\mathbb{E}(Y \mid D=0)=\beta+[\mathbb{E}(U \mid D=1)-\mathbb{E}(U \mid D=0)]
$$

Does this agree with the regression expression from above?

Recall: Properties of $\mathbb{E}(W \mid X=x) \equiv \sum_{\text {all } x} w \cdot \mathbb{P}(W=w \mid X=x)$

Linearity

$$
\begin{aligned}
\mathbb{E}(c W \mid X=x) & =c \mathbb{E}(W \mid X=x) \\
\mathbb{E}(W+Z \mid X=x) & =\mathbb{E}(W \mid X=x)+\mathbb{E}(Z \mid X=x)
\end{aligned}
$$

Iterated Expectations

$$
\begin{gathered}
\mathbb{E}(W)=\mathbb{E}_{X}[\mathbb{E}(W \mid X)] \equiv \sum_{\text {all } x} \mathbb{E}(W \mid X=x) \mathbb{P}(X=x) \\
\mathbb{E}(W \mid Z=z)=\mathbb{E}_{(X \mid Z=z)}[\mathbb{E}(W \mid X, Z=z)] \equiv \sum_{\text {all } x} \mathbb{E}(W \mid X=x, Z=z) \mathbb{P}(X=x \mid Z=z)
\end{gathered}
$$

One more property: "Taking Out What is Known"

Mathematics

$$
\mathbb{E}[f(X) \cdot W \mid X]=f(X) \cdot \mathbb{E}[W \mid X] \quad \text { for any (measurable) function } f \text { of } X
$$

Intuition

- $\mathbb{E}[W \mid X]$ is the expectation of W if we pretend that we know the realization of X.
- The realization of X is simply a constant; so is the realization of $f(X)$.
- We can pull constants in front of an expectation.

$\operatorname{Cov}(W, X) / \operatorname{Var}(X)=\mathbb{E}(W \mid X=1)-\mathbb{E}(W \mid X=0)$ for binary X.

Step 1

Recall that $\mathbb{E}(X)=\mathbb{P}(X=1) \equiv p$ and $\operatorname{Var}(X)=p(1-p)$ if X is binary.

Step 2

Recall that $\operatorname{Cov}(W, X)=\mathbb{E}(W X)-\mathbb{E}(W) \mathbb{E}(X)$ so we only need $\mathbb{E}(W X)$ and $\mathbb{E}(W)$.

Step 3

Iterated Expectations: $\mathbb{E}(W)=\mathbb{E}_{X}[\mathbb{E}(W \mid X)]=\mathbb{E}(W \mid X=1) p+\mathbb{E}(W \mid X=0)(1-p)$.
Step 4 - Exercise: Show that $\mathbb{E}(W X)=\mathbb{E}(W \mid X=1) p$.

$\operatorname{Cov}(W, X) / \operatorname{Var}(X)=\mathbb{E}(W \mid X=1)-\mathbb{E}(W \mid X=0)$ for binary X.

Step 1

Recall that $\mathbb{E}(X)=\mathbb{P}(X=1) \equiv p$ and $\operatorname{Var}(X)=p(1-p)$ if X is binary.

Step 2

Recall that $\operatorname{Cov}(W, X)=\mathbb{E}(W X)-\mathbb{E}(W) \mathbb{E}(X)$ so we only need $\mathbb{E}(W X)$ and $\mathbb{E}(W)$.

Step 3

Iterated Expectations: $\mathbb{E}(W)=\mathbb{E}_{X}[\mathbb{E}(W \mid X)]=\mathbb{E}(W \mid X=1) p+\mathbb{E}(W \mid X=0)(1-p)$.
Step 4 - Exercise: Show that $\mathbb{E}(W X)=\mathbb{E}(W \mid X=1) p$.
Iterated Expectations and Taking Out What is Known

$$
\begin{aligned}
\mathbb{E}(W X) & =\mathbb{E}_{X}[X \mathbb{E}(W \mid X)]=0 \times \mathbb{E}(W \mid X=0)(1-p)+1 \times \mathbb{E}(W \mid X=1) p \\
& =\mathbb{E}(W \mid X=1) p
\end{aligned}
$$

$\operatorname{Cov}(W, X) / \operatorname{Var}(X)=\mathbb{E}(W \mid X=1)-\mathbb{E}(W \mid X=0)$ for binary X.

Previous Slide

- Step 1: $\mathbb{E}(X)=p$ and $\operatorname{Var}(X)=p(1-p)$
- Step 2: $\operatorname{Cov}(W, X)=\mathbb{E}(W X)-\mathbb{E}(W) \mathbb{E}(X)$
- Step 3: $\mathbb{E}(W)=\mathbb{E}(W \mid X=1) p+\mathbb{E}(W \mid X=0)(1-p)$
- Step 4: $\mathbb{E}(W X)=\mathbb{E}(W \mid X=1) p$

Putting the Pieces Together

$$
\begin{aligned}
\operatorname{Cov}(W, X) & =\mathbb{E}(W X)-\mathbb{E}(W) \mathbb{E}(X) \\
& =\mathbb{E}(W \mid X=1) p-[\mathbb{E}(W \mid X=1) p+\mathbb{E}(W \mid X=0)(1-p)] p \\
& =\mathbb{E}(W \mid X=1) p(1-p)-\mathbb{E}(W \mid X=0)(1-p) p \\
& =[\mathbb{E}(W \mid X=1)-\mathbb{E}(W \mid X=0)] \operatorname{Var}(X)
\end{aligned}
$$

This also makes sense if you think of regression and dummy variables...

So yes: everything works out as it should!
Fundamental Decomposition

$$
\underbrace{\mathbb{E}(Y \mid D=1)-\mathbb{E}(Y \mid D=0)}_{\text {Observed Difference of Means }}=\underbrace{\mathbb{E}\left(Y_{1}-Y_{0} \mid D=1\right)}_{\text {TOT }}+\underbrace{\left[\mathbb{E}\left(Y_{0} \mid D=1\right)-\mathbb{E}\left(Y_{0} \mid D=0\right)\right]}_{\text {Selection Bias }}
$$

Homogeneous Effects Model

$$
\mathbb{E}(Y \mid D=1)-\mathbb{E}(Y \mid D=0)=\beta+[\mathbb{E}(U \mid D=1)-\mathbb{E}(U \mid D=0)]
$$

Regression Version

$$
\beta_{\mathrm{OLS}} \equiv \frac{\operatorname{Cov}(D, Y)}{\operatorname{Var}(D)}=\beta+\frac{\operatorname{Cov}(D, U)}{\operatorname{Var}(D)}
$$

Previous Slide
If X is binary then $\frac{\operatorname{Cov}(W, X)}{\operatorname{Var}(X)}=\mathbb{E}(W \mid X=1)-\mathbb{E}(W \mid X=0)$.

The "Textbook" Instrumental Variables Model

Linear, Homogeneous Model
$Y \leftarrow \alpha+\beta D+U \quad$ (notice: doesn't include Z !)
Endogenous Treament
The treatment D is endogenous if $\operatorname{Cov}(D, U) \neq 0$.
Instrument Relevance
Z is relevant if $\operatorname{Cov}(Z, D) \neq 0$, i.e. $Z \rightarrow D$.
Instrument Exogeneity / Exclusion
Z is exogenous if $\operatorname{Cov}(Z, U)=0$; i.e. $Z \not \leftrightarrow U$ and $Z \nleftarrow Y$.
Valid Instrument
Z is a valid instrument if it is relevant and exogenous.

The "Textbook" Instrumental Variables Model

Linear, Homogeneous Model
$Y \leftarrow \alpha+\beta D+U$
Valid Instrument
Z is relevant and exogenous: $\operatorname{Cov}(Z, D) \neq 0$ and $\operatorname{Cov}(Z, U)=0$
Exercise - Show that $\operatorname{Cov}(Z, Y) / \operatorname{Cov}(Z, D)=\beta$.

The "Textbook" Instrumental Variables Model

Linear, Homogeneous Model
$Y \leftarrow \alpha+\beta D+U$

Valid Instrument

Z is relevant and exogenous: $\operatorname{Cov}(Z, D) \neq 0$ and $\operatorname{Cov}(Z, U)=0$
Exercise - Show that $\operatorname{Cov}(Z, Y) / \operatorname{Cov}(Z, D)=\beta$.

$$
\beta_{\mathrm{IV}} \equiv \frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\frac{\operatorname{Cov}(Z, \alpha+\beta D+U)}{\operatorname{Cov}(Z, D)}=\frac{\beta \operatorname{Cov}(Z, D)+\operatorname{Cov}(Z, U)}{\operatorname{Cov}(Z, D)}=\beta=\mathrm{ATE}
$$

Notice

When Z is binary this coincides with our idea from earlier in the lecture:

$$
\beta_{\mathrm{IV}} \equiv \frac{\operatorname{Cov}(Z, Y)}{\operatorname{Cov}(Z, D)}=\frac{\operatorname{Cov}(Z, Y) / \operatorname{Var}(Z)}{\operatorname{Cov}(Z, D) / \operatorname{Var}(Z)}=\frac{\mathbb{E}(Y \mid Z=1)-\mathbb{E}(Y \mid Z=0)}{\mathbb{E}(D \mid Z=1)-\mathbb{E}(D \mid Z=0)}
$$

What's the role of instrument relevance?

Exercise: Why do we need $\operatorname{Cov}(Z, D) \neq 0$?

What's the role of instrument relevance?

Exercise: Why do we need $\operatorname{Cov}(Z, D) \neq 0$?

- Math answer: appears in denominator of the IV expression; can't divide by zero!
- Causal inference answer: $\operatorname{Cov}(Z, D)$ means Z has no causal effect on D.

Exercise: can we test either of the IV assumptions?

What's the role of instrument relevance?

Exercise: Why do we need $\operatorname{Cov}(Z, D) \neq 0$?

- Math answer: appears in denominator of the IV expression; can't divide by zero!
- Causal inference answer: $\operatorname{Cov}(Z, D)$ means Z has no causal effect on D.

Exercise: can we test either of the IV assumptions?

- $\operatorname{Cov}(Z, D)$ is something we can calculate from data, so we can test it.
- $\operatorname{Cov}(Z, U)$ depends on U, something we don't observe. That's not quite the end of the story though: register for Beyond the Basics if you want to learn more!

Simulation Example

```
set.seed(1234)
n <- 5000
u <- rnorm(n)
z <- rbinom(n, size = 1, prob = 0.5)
cov(z, u) # exogenous instrument
## [1] -0.0005708841
d <- rbinom(n, size = 1, prob = plogis(2 * z - u - 1))
cov(d, u) # endogenous treatment
## [1] -0.1871822
cov(d, z) # relevant instrument
## [1] 0.09425341
```


Simulation Example

```
alpha <- 0
beta <- 1
y <- alpha + beta * d + u
cov(d, y) / var(d) # OLS
## [1] 0.2513902
cov(d, u) / var(d) # This plus OLS should be approximately beta
## [1] -0.7486098
cov(z, y) / cov(z, d) # IV
## [1] 0.9939431
```


Simulation Example

```
cov(z, y) / cov(z, d) # IV
## [1] 0.9939431
numerator <- mean(y[z == 1]) - mean(y[z == 0])
denominator <- mean(d[z == 1]) - mean(d[z == 0])
numerator / denominator # Should be identical to IV
## [1] 0.9939431
```


But treatment effects are heterogeneous!

The Rest of the Lecture

- "Textbook" IV solves selection bias but assumes homogeneous effects.
- Does β_{IV} have any meaning if treatment effects vary?

Crucial Question

Who gets treated and why?

Easiest Way to Understand

Experiments with non-compliance: the treatment that is assigned may not be the one that is received

Figure 1: The Elephant in the Room.

Example: Pawn Lending in Mexico City ${ }^{2}$

Pawn Lending

- Valuable object (pawn) as collateral; receive loan for 70% of its appraised value.
- Regain your pawn by repaying loan plus interest by the deadline, otherwise lose it.

Status Quo Contract

- Single payment due at the end of three months; no reminders.
- Over 40% of borrowers default, losing their pawn and any payments made.
- Strictly worse off than if they'd sold their pawn for 100% of its appraised value!

New "Commitment" Contract

Monthly payments, small penalties for late payment \& reminders. Fewer defaults?

[^1]
Example: Pawn Lending in Mexico City

Randomized Controlled Trial

- $Z=0 \Longrightarrow$ status quo contract
- $Z=1 \Longrightarrow$ choice of contracts

One-sided Non-compliance

- Everyone with $Z=0$ receives the status quo contract
- People with $Z=1$ can opt-in to the new "commitment" contract.

Research Question
What is the causal effect of receiving the new contract.

Figure 2: Commitment Choice.

Compliers: People who only take the treatment when offered.

One-sided Non-compliance
Z is randomly assigned; $Z=0 \Longrightarrow D=0 ; Z=1 \Longrightarrow$ free to choose D.

First Stage: $Z \rightarrow D$

- Effect of treatment offer on treatment receipt; probably varies across people!
- One-sided Non-compliance \Longrightarrow two possible $Z \rightarrow D$ effects
- Effect is zero: $D=0$ regardless of Z. (cf. "doomed" from disease example)
- Effect is one: switch from $D=0$ to $D=1$. (cf. "cured" from disease example)

Complier

- Someone who only takes treatment when offered: $Z \rightarrow D$ effect is one
- Pawn Example: someone who would choose the commitment contract, if offered.
- It's likely that compliers have systematically different treatment effects!

IV with Heterogeneous Treatment Effects: One-sided Non-compliance

Let $C=1$ if complier, zero otherwise. Then:

$$
D=C \cdot Z \quad \Longrightarrow \quad Y=Y_{0}+D\left(Y_{1}-Y_{0}\right)=Y_{0}+C \cdot Z\left(Y_{1}-Y_{0}\right)
$$

Assumption: $Z \Perp\left(C, Y_{0}, Y_{1}\right)$

$$
\begin{aligned}
& \mathbb{E}(Y \mid Z=1)=\mathbb{E}\left[Y_{0}+C \cdot\left(Y_{1}-Y_{0}\right) \mid Z=1\right]=\mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left[C \cdot\left(Y_{1}-Y_{0}\right)\right] \\
& \mathbb{E}(Y \mid Z=0)=\mathbb{E}\left(Y_{0} \mid Z=0\right)=\mathbb{E}\left(Y_{0}\right)
\end{aligned}
$$

Intent to Treat: $(Z \rightarrow Y)$

$$
\begin{aligned}
\mathrm{ITT} & \equiv \mathbb{E}(Y \mid Z=1)-\mathbb{E}(Y \mid Z=0)=\mathbb{E}\left[C \cdot\left(Y_{1}-Y_{0}\right)\right] \\
& =\mathbb{E}_{C}\left[C \cdot \mathbb{E}\left(Y_{1}-Y_{0} \mid C\right)\right]=\mathbb{E}\left(Y_{1}-Y_{0} \mid C=1\right) \mathbb{P}(C=1)
\end{aligned}
$$

IV with Heterogeneous Treatment Effects: One-sided Non-compliance

Previous Slide
$D=C \cdot Z$, Assumption: $Z \Perp\left(C, Y_{0}, Y_{1}\right)$, and $\operatorname{ITT}=\mathbb{E}\left(Y_{1}-Y_{0} \mid C=1\right) \mathbb{P}(C=1)$
First Stage: $(Z \rightarrow D)$

$$
\mathrm{FS} \equiv \mathbb{E}(D \mid Z=1)-\mathbb{E}(D \mid Z=0)=\mathbb{E}(C \mid Z=1)-0=\mathbb{E}(C)=\mathbb{P}(C=1)
$$

Result: $\operatorname{IV}=\mathbb{E}\left(Y_{1}-Y_{0} \mid C=1\right)$

- Under 1-sided non-compliance \& heterogeneous treatment effects, IV equals the average causal effect for compliers.
- Since we divide by $\mathbb{P}(C=1)$, need this to be positive.

One-sided Non-compliance: The Compliers are The Treated

Previous Slide

$\mathrm{IV}=\mathrm{ITT} / \mathrm{FS}=\mathbb{E}\left(Y_{1}-Y_{0} \mid C=1\right)$.

Two Observations

- Conditioning on $(Z=1, C=1)$ is equivalent to conditioning on $D=1$.
- Properties ${ }^{3}$ of conditional independence: $Z \Perp\left(Y_{0}, Y_{1}, C\right) \Longrightarrow Z \Perp\left(Y_{1}-Y_{0}\right) \mid C$.

Punchline
Under 1-sided non-compliance and heterogeneous treatment effects, IV equals TOT!

$$
\begin{aligned}
\mathrm{TOT} & \equiv \mathbb{E}\left(Y_{1}-Y_{0} \mid D=1\right)=\mathbb{E}\left(Y_{1}-Y_{0} \mid Z=1, C=1\right) \\
& =\mathbb{E}\left(Y_{1}-Y_{0} \mid C=1\right)=\mathbb{V}
\end{aligned}
$$

[^2]
Example: Pawn Lending in Mexico City

- Only 11% choose commitment.
- TOT for default is negative: commitment lowers default for the sort of person who chooses it
- Low take-up leads to relatively imprecise estimates.

Figure 3: He probably didn't choose commitment.

Example: The 1944 British Education Act ${ }^{4}$

The minimum school-leaving age in Britain increased from 14 to 15 in 1947. Within two years of this policy change, the portion of 14-year-olds leaving school fell from 57% to less than 10%.

The finding that some adults reported finishing school at age 14, even after the school-leaving age had been changed, may reflect measurement error, noncompliance, or delayed enforcement.

What is the causal effect of staying in school until 15 on wage?

Figure 4: What a difference a year makes!

[^3]
Example: The 1944 British Education Act

Simplified Version
After policy change all must be treated; before some choose to be treated.
$Z=0$

- Turned 14 just before policy change.
- Can choose $D=0$ or $D=1$
$Z=1$
- Turned 14 just after policy change.
- Forced to have $D=1$

Always-Taker
No $Z \rightarrow D$ causal effect: would say in school until age 15 regardless.

Figure 5: What a difference a year makes!

Two Kinds of One-sided Non-compliance

Pawn Lending Example

- $Z=0 \Longrightarrow D=0$ but $Z=1 \Longrightarrow$ can choose $D=0$ or 1 .
- Someone who chooses $D=1$ when $Z=1$ is called a complier.
- Assumptions: $Z \Perp\left(C, Y_{0}, Y_{1}\right)$ and there are at least some compliers.
- IV gives average causal effect for compliers; equivalent to TOT

British Education Example

- $Z=1 \Longrightarrow D=1$ but $Z=0 \Longrightarrow$ can choose $D=0$ or 1 .
- Someone who chooses $D=1$ when $Z=0$ is called an always-taker
- Assumptions: $Z \Perp\left(A, Y_{0}, Y_{1}\right)$ and not everyone is an always-taker.
- IV gives the average causal effect for people who are not always-takers.
- Equivalent to the treatment on the untreated: $\mathbb{E}\left(Y_{1}-Y_{0} \mid D=0\right)$.

Example: KIPP Academy Lynn ${ }^{5}$

The nation's largest network of charter schools is the Knowledge is Power Program (KIPP).

KIPP schools target low income and minority students and ... feature a long school day and year, selective teacher hiring, strict behavior norms, and encourage a strong student work ethic.

Descriptive accounts of KIPP suggest positive achievement effects, but critics argue that the apparent KIPP advantage reflects differences between students who attend traditional public schools and students that choose to attend KIPP.

Figure 6: Terrifying artist's rendition of a Charter School Lottery.

[^4]
Example: KIPP Academy Lynn ${ }^{6}$

KIPP Lynn ... is the only charter school in Lynn Masschusetts, a low income city north of Boston.

Statewide regulations require Massachusetts charter schools to use a lottery when oversubscribed.

The 2005-2008 admissions lotteries are used here to develop a quasi-experimental research design. These randomized lotteries allow us to estimate the causal effect of KIPP Lynn on achievement, solving the problem of selection bias that plagues most studies of school effectiveness.

[^5]
Example: KIPP Academy Lynn7

Lottery

$Z=1$ if offered place at KIPP Lynn.
Two-sided Noncompliance

- $Z=0 \nRightarrow D=0 ; Z=1 \nRightarrow D=1$
- 25% of lottery winners didn't attend KIPP.
- 3.5% of lottery losers did attend KIPP.

Research Question
What is the causal effect of attending KIPP Lynn ($D=1$) on math test scores Y ?

[^6]
Two-sided Non-compliance and Potential Treatments

Potential Treatments $\left(D_{0}, D_{1}\right)$

- D_{0} is a person's D if $Z=0$
- D_{1} is a person's D if $Z=1$
- Observe $D=(1-Z) D_{0}+Z D_{1}$
- Compare to the disease example!

Type	D_{0}	D_{1}	$\left(D_{1}-D_{0}\right)$
Never-taker (N)	0	0	0
Always-taker (A)	1	1	0
Complier (C)	0	1	1
Defier (D)	1	0	-1

Table 1: The four "compliance types" and their respective causal effects of Z on D.

KIPP Example

- Never-takers would not attend KIPP regardless of the lottery outcome.
- Always-takers would attend KIPP regardless of the lottery outcome.
- Compliers would attend KIPP if they won the lottery, but not if they lost.
- Defiers would only attend KIPP if they lost the lottery, just to spite you!

Assumption 1: No Defiers

What's the problem?
If treatment effects vary, need to compare average values of Y_{1} and Y_{0} for same group of people to learn a causal effect.

Type	D_{0}	D_{1}	$D(Z)$
Never-taker (N)	0	0	0
Always-taker (A)	1	1	1
Complier (C)	0	1	Z
Defier (D)	1	0	$1-Z$

Table 2: The four "compliance types" and their treatment take-up rules.

With Defiers

- Can't tell if someone with $(Z=1, D=0)$ is a never-taker or defier.
- Can't tell if someone with $(Z=0, D=1)$ is an always-taker or defier.
- Notice: there were automatically no defiers in the one-sided examples!

Assumption 1: No Defiers

Without Defiers

- $(Z=1, D=0) \Longrightarrow$ never-taker.
- $(Z=0, D=1) \Longrightarrow$ always-taker.

Notation

- $A=1$ if always-taker, zero otherwise

Type	D_{0}	D_{1}	$D(Z)$
Never-taker (N)	0	0	0
Always-taker (A)	1	1	1
Complier (C)	0	1	Z

Table 3: The three "compliance types" if we assume no defiers.

- $C=1$ if complier, zero otherwise

Implication
No Defiers implies that $D=A+C \cdot Z$ and hence

$$
Y=Y_{0}+D\left(Y_{1}-Y_{0}\right)=Y_{0}+(A+C \cdot Z)\left(Y_{1}-Y_{0}\right)
$$

Assumption 2: $Z \Perp\left(Y_{0}, Y_{1}, C, A\right)$

Previous Slide
No Defiers Assumption $\Rightarrow D=A+C \cdot Z$ hence $Y=Y_{0}+(A+C \cdot Z)\left(Y_{1}-Y_{0}\right)$.
Using Assumption 2

$$
\mathbb{E}(Y \mid Z=1)=\mathbb{E}\left[Y_{0}+(A+C)\left(Y_{1}-Y_{0}\right) \mid Z=1\right]=\mathbb{E}\left[Y_{0}+(A+C)\left(Y_{1}-Y_{0}\right)\right]
$$

$$
\mathbb{E}(Y \mid Z=0)=\mathbb{E}\left[Y_{0}+A\left(Y_{1}-Y_{0}\right) \mid Z=0\right]=\mathbb{E}\left[Y_{0}+A\left(Y_{1}-Y_{0}\right)\right]
$$

$$
\begin{aligned}
\mathrm{ITT} & \equiv \mathbb{E}(Y \mid Z=1)-\mathbb{E}(Y \mid Z=0)=\mathbb{E}\left[C\left(Y_{1}-Y_{0}\right)\right]=\mathbb{E}\left(Y_{1}-Y_{0} \mid C=1\right) \mathbb{P}(C=1) \\
\mathrm{FS} & \equiv \mathbb{E}(D \mid Z=1)-\mathbb{E}(D \mid Z=0)=\mathbb{E}(C+A \mid Z=1)-\mathbb{E}(A \mid Z=0)=\mathbb{E}(C)
\end{aligned}
$$

Therefore: $\operatorname{IV}=\mathbb{E}\left(Y_{1}-Y_{0} \mid C=1\right)$.
This is often called the Local Average Treatment Effect (LATE)

Example: KIPP Academy Lynn

- The local average treatment effect of attending KIPP Academy Lynn for one year is approximately half a standard deviation of math test scores.
- This is quite a sizable effect, but remember that it is not the ATE!
- We might wonder how the effect for compliers differs from that for the population at large.

Discussion of IV with Heterogeneous Treatment Effects

- If treatment effects are heterogeneous, IV does not give us the ATE:
- One-sided non-compliance: TOT or TUT
- Two-sided non-compliance: LATE
- Who are the compliers? Better LATE than nothing?
- Different instruments for the same treatment can yield different causal effects, since different people would choose to comply.
- Three assumptions:

1. Relevance: $\mathbb{E}(D \mid Z=1) \neq \mathbb{E}(D \mid Z=0)$ is testable.
2. No defiers (only in needed in 2-sided case)
3. Exclusion/Exogeneity: $Z \Perp\left(Y_{0}, Y_{1}, C, A\right)$ is not.

- Crucial question is whether Z could have a causal effect of its own.

Much more to say about IV! Why not sign up for Beyond the Basics in September?

Appendix

Derivations for The Other Kind of One-sided Non-compliance

Intent-to-treat: $Z \rightarrow Y$

$\mathrm{ITT}=\mathbb{E}(Y \mid Z=1)-\mathbb{E}(Y \mid Z=0)$

$$
\begin{aligned}
\mathbb{E}(Y \mid Z=1) & =\mathbb{E}\left[Y_{0}+\left(Y_{1}-Y_{0}\right) \mid Z=1\right] \\
& =\mathbb{E}\left(Y_{1}\right)
\end{aligned}
$$

Treatment Take-up

- $A=1$ if always-taker
- $D=Z+A \cdot(1-Z)$

$$
\begin{aligned}
\mathbb{E}(Y \mid Z=0) & =\mathbb{E}\left[Y_{0}+A \cdot\left(Y_{1}-Y_{0}\right) \mid Z=0\right] \\
& =\mathbb{E}\left(Y_{0}\right)+\mathbb{E}\left[A \cdot\left(Y_{1}-Y_{0}\right)\right]
\end{aligned}
$$

Outcome

$Y=Y_{0}+D\left(Y_{1}-Y_{0}\right)$
Combining

$$
Y=Y_{0}+[Z+A \cdot(1-Z)]\left(Y_{1}-Y_{0}\right)
$$

Assumption

$Z \Perp\left(A, Y_{0}, Y_{1}\right)$

$$
\begin{aligned}
\mathrm{ITT} & =\mathbb{E}\left(Y_{1}\right)-\mathbb{E}\left(Y_{0}\right)-\mathbb{E}\left[A \cdot\left(Y_{1}-Y_{0}\right)\right] \\
& =\mathbb{E}\left[(1-A)\left(Y_{1}-Y_{0}\right)\right] \\
& =\mathbb{E}_{A}\left[(1-A) \cdot \mathbb{E}\left(Y_{1}-Y_{0} \mid A\right)\right] \\
& =\mathbb{E}\left(Y_{1}-Y_{0} \mid A=0\right) \mathbb{P}(A=0)
\end{aligned}
$$

Derivations for The Other Kind of One-sided Non-compliance

Intent-to-treat: $Z \rightarrow Y$
ITT $=\mathbb{E}\left(Y_{1}-Y_{0} \mid A=0\right) \mathbb{P}(A=0)$
First-Stage: $Z \rightarrow D$

$$
\begin{aligned}
\mathrm{FS} & \equiv \mathbb{E}(D \mid Z=1)-\mathbb{E}(D \mid Z=0) \\
& =1-\mathbb{E}(D \mid Z=0)
\end{aligned}
$$

Treatment Take-up

- $A=1$ if always-taker
- $D=Z+A \cdot(1-Z)$

Assumption
$Z \Perp\left(A, Y_{0}, Y_{1}\right)$

$$
\begin{aligned}
\mathrm{FS} & =1-\mathbb{E}(A \mid Z=0) \\
& =1-\mathbb{E}(A) \\
& =1-\mathbb{P}(A=1)=\mathbb{P}(A=0) \\
\mathrm{IV} & \equiv \frac{\mathrm{ITT}}{\mathrm{FS}}=\frac{\mathbb{E}\left(Y_{1}-Y_{0} \mid A=1\right) \mathbb{P}(A=0)}{\mathbb{P}(A=0)} \\
& =\mathbb{E}\left(Y_{1}-Y_{0} \mid A=0\right)
\end{aligned}
$$

In this case IV equals the ATE for people who only take the treatment when forced to do so.

Derivations for the The Other Kind of One-sided Non-compliance

Previous Slide

$\mathrm{IV}=\mathrm{ITT} / \mathrm{FS}=\mathbb{E}\left(Y_{1}-Y_{0} \mid A=0\right)$.

Two Observations

- Conditioning on $(Z=0, A=0)$ is equivalent to conditioning on $D=0$.
- Properties ${ }^{8}$ of conditional independence: $Z \Perp\left(Y_{0}, Y_{1}, A\right) \Longrightarrow Z \Perp\left(Y_{1}-Y_{0}\right) \mid A$.

Punchline

Under this form of 1-sided non-compliance, IV is the treated on the untreated effect:

$$
\begin{aligned}
\text { TUT } & \equiv \mathbb{E}\left(Y_{1}-Y_{0} \mid D=0\right)=\mathbb{E}\left(Y_{1}-Y_{0} \mid Z=0, A=0\right) \\
& =\mathbb{E}\left(Y_{1}-Y_{0} \mid A=0\right)=\mathbb{I V}
\end{aligned}
$$

[^7]
[^0]: ${ }^{1}$ Conditioning on Z is a disastrous idea: see my blog post "A Good Instrument is a Bad Control".

[^1]: ${ }^{2}$ See "The Controlled Choice Design and Privated Paternalism in Pawnshop Borrowing" for more.

[^2]: ${ }^{3}$ Specifically: "Weak Union" and "Decomposition". See https://expl.ai/LXPVDDN and Chapter 2.

[^3]: ${ }^{4}$ Quotes from Oreopoulos (2006).

[^4]: ${ }^{5}$ Angrist et al (2010) and Angrist et al (2012)

[^5]: ${ }^{6}$ Angrist et al (2010) and Angrist et al (2012)

[^6]: ${ }^{7}$ Slightly simpler version of this example as presented in Mastering 'Metrics.

[^7]: ${ }^{8}$ Specifically: "Weak Union" and "Decomposition". See https://expl.ai/LXPVDDN and Chapter 2.

