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Where have we been and where are we headed?

Lecture #1
▶ If D is randomly assigned, it is straightforward to learn the ATE.
▶ If D is not randomly assigned, selection bias / confounding imply that

E[Y |D = 1]− E[Y |D = 0] usually doesn’t tell us what we want to know.

Lecture #2
▶ Even if D wasn’t randomly assigned, perhaps there’s no selection bias after we

adjust for observed variables X . This is called selection on observables.
▶ Avoiding bad controls requires a causal model; DAGs help us reason about these.

Lectures #3–5
When the selection-on-observables approach fails, is there anything else we could try?
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Recall from Lecture #2

Back-door Path
▶ A path between treatment and outcome starting with edge pointing into treatment.
▶ Back-door paths are non-causal: only edges pointing out from treatment represent

causal effects.

Back-door Criterion
1. List all the paths that connect treatment and outcome.

2. Check which of them open. A path is open unless it contains a collider.

3. Check which of them are back-door paths: contain an arrow pointing at D.

4. If there are no open back-door paths, you’re done. If not, look for nodes you can
condition on to block remaining open back-door paths without opening new ones.
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Exercise: If D and Z are binary, which statements are true?

D

Y

U

Z

1. E[Y |D = 1]− E[Y |D = 0] = D → Y causal effect

2. E[D|Z = 1]− E[D|Z = 0] = Z → D causal effect

3. E[Y |Z = 1]− E[Y |Z = 0] = Z → Y causal effect

4. We can learn the D → Y effect by conditioning on U.

5. We can learn the D → Y effect by conditioning on Z .
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Solution: 1 and 5 are False, 2–4 are True1

D

Y

U

Z

1. E[Y |D = 1]− E[Y |D = 0] ̸= D → Y causal effect

2. E[D|Z = 1]− E[D|Z = 0] = Z → D causal effect

3. E[Y |Z = 1]− E[Y |Z = 0] = Z → Y causal effect

4. We can learn the D → Y effect by conditioning on U.

5. We can’t learn the D → Y effect by conditioning on Z .

▶ Conditioning on U blocks the backdoor path D ← U → Y .
▶ No open backdoor paths between Z and D or between Z and Y .
▶ Conditioning on Z does not block the backdoor path D ← U → Y .

1Conditioning on Z is a disastrous idea: see my blog post “A Good Instrument is a Bad Control”.
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In this DAG, Z is a so-called “Instrumental Variable”

D

Y

U

Z

Setting
▶ Want to learn the D → Y causal effect
▶ U represents unobserved causes of D and Y .
▶ Can’t use selection on observables.

Relevance
Z and D are adjacent: Z causes D.

Exogeneity / Exclusion
Z and U are not adjacent and Z and Y are not adjacent.
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Example: Effectiveness of Charter Schools

D

Y

U

Z

Research Question
Does attending a charter school increase math scores?

Unobserved Counfounders
U could include “ability”, “grit”, family background, etc.

What are we looking for?
Observed variable Z that causes charter school attendance
but is unrelated to U and has no direct effect on math scores.

Clever Idea
When oversubscribed, some charter schools use a lottery to choose which students are
admitted. Let Z = 1 if a student wins the lottery.
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Instrumental Variable Intuition

D

Y

U

Z

From our Warm-up Exercise:
▶ E[D|Z = 1]− E[D|Z = 0] = Z → D causal effect
▶ E[Y |Z = 1]− E[Y |Z = 0] = Z → Y causal effect

▶ Z only affects Y through its causal effect on D, which in turn affects Y .
▶ Therefore: (Z → Y effect) = (Z → D effect)× (D → Y effect).

(D → Y effect) = (Z → Y effect)
(Z → D effect) = E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
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The “Textbook” Linear, Homogeneous Effects Model

▶ Linear causal model with homogeneous treatment effects: Y ← α + βD + U
▶ Model says that changing D has the same effect for everyone: increasing D by one

unit increases Y by β units
▶ D doesn’t have to be binary; if it is we can make a link with potential outcomes:

D = 0 =⇒ Y = α + U =⇒ Y0 = α + U
D = 1 =⇒ Y = (α + β) + U =⇒ Y1 = (α + β) + U

▶ Therefore, if D is binary, β = Y1 − Y0, a constant that is the same for everyone.
▶ Linearity isn’t an extra assumption if D is binary
▶ Since β = Y1 − Y0 is constant, it equals E(Y1 − Y0) ≡ ATE.
▶ The next few slides assume you know a bit about linear regression.
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Recall: Linear Regression and Exogeneity
Exogeneity
In the causal model (Y ← α + βD + U) we say that D is exogenous if Cov(D, U) = 0.

Population Linear Regression
The slope coefficient from a regression of Y on D is βOLS ≡

Cov(D, Y )
Var(D) .

Properties of Covariance
Cov(X , W ) = Cov(W , X ) Cov(aX + b, W ) = aCov(X , W )
Cov(X , X ) = Var(X ) Cov(X , W + V ) = Cov(X , W ) + Cov(X , V )

Therefore

βOLS ≡
Cov(D, Y )

Var(D) = Cov(D, α + βD + U)
Var(D) = βCov(D, D) + Cov(D, U)

Var(D) = β+Cov(D, U)
Var(D)
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If D is Exogenous and Binary, Linear Regression Gives the ATE

Y ← α + βD + U, β = Y1 − Y0 = E(Y1 − Y0) ≡ ATE

Cov(D, U) = 0 =⇒ βOLS ≡
Cov(D, Y )

Var(D) = β + Cov(D, U)
Var(D) = β = ATE

Wait a second. . .
How does this relate to ATE = E[Y |D = 1]− E[Y |D = 0] from Lecture #1?
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Recall: The Fundamental Decomposition

E(Y |D = 1)− E(Y |D = 0)︸ ︷︷ ︸
Observed Difference of Means

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1)− E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

Homogeneous Effects Model
▶ (Y ← α + βD + U) equivalent to Y0 = α + U and Y1 = (α + β) + U
▶ TOT ≡ E(Y1 − Y0|D = 1) = E(β|D = 1) = β = ATE
▶ E(Y0|D = 1)− E(Y0|D = 0) = E(α + U|D = 1)− E(α + U|D = 0)
▶ Hence, the fundamental decomposition becomes

E(Y |D = 1)− E(Y |D = 0) = β + [E(U|D = 1)− E(U|D = 0)]

Does this agree with the regression expression from above?
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Recall: Properties of E(W |X = x) ≡
∑
all x

w · P(W = w |X = x)

Linearity
E(cW |X = x) = cE(W |X = x)

E(W + Z |X = x) = E(W |X = x) + E(Z |X = x)

Iterated Expectations

E(W ) = EX [E(W |X )] ≡
∑
all x

E(W |X = x)P(X = x)

E(W |Z = z) = E(X |Z=z)[E(W |X , Z = z)] ≡
∑
all x

E(W |X = x , Z = z)P(X = x |Z = z)
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One more property: “Taking Out What is Known”

Mathematics

E[f (X ) ·W |X ] = f (X ) · E[W |X ] for any (measurable) function f of X .

Intuition
▶ E[W |X ] is the expectation of W if we pretend that we know the realization of X .
▶ The realization of X is simply a constant; so is the realization of f (X ).
▶ We can pull constants in front of an expectation.
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Cov(W , X )/Var(X ) = E(W |X = 1)− E(W |X = 0) for binary X .
Step 1
Recall that E(X ) = P(X = 1) ≡ p and Var(X ) = p(1− p) if X is binary.

Step 2
Recall that Cov(W , X ) = E(WX )− E(W )E(X ) so we only need E(WX ) and E(W ).

Step 3
Iterated Expectations: E(W ) = EX [E(W |X )] = E(W |X = 1)p + E(W |X = 0)(1− p).

Step 4 – Exercise: Show that E(WX ) = E(W |X = 1)p.

Iterated Expectations and Taking Out What is Known

E(WX ) = EX [XE(W |X )] = 0× E(W |X = 0)(1− p) + 1× E(W |X = 1)p
= E(W |X = 1)p
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Cov(W , X )/Var(X ) = E(W |X = 1)− E(W |X = 0) for binary X .
Previous Slide
▶ Step 1: E(X ) = p and Var(X ) = p(1− p)
▶ Step 2: Cov(W , X ) = E(WX )− E(W )E(X )
▶ Step 3: E(W ) = E(W |X = 1)p + E(W |X = 0)(1− p)
▶ Step 4: E(WX ) = E(W |X = 1)p

Putting the Pieces Together

Cov(W , X ) = E(WX )− E(W )E(X )
= E(W |X = 1)p − [E(W |X = 1)p + E(W |X = 0)(1− p)]p
= E(W |X = 1)p(1− p)− E(W |X = 0)(1− p)p
= [E(W |X = 1)− E(W |X = 0)]Var(X )

This also makes sense if you think of regression and dummy variables...
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So yes: everything works out as it should!
Fundamental Decomposition
E(Y |D = 1)− E(Y |D = 0)︸ ︷︷ ︸

Observed Difference of Means

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1)− E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

Homogeneous Effects Model
E(Y |D = 1)− E(Y |D = 0) = β + [E(U|D = 1)− E(U|D = 0)]

Regression Version
βOLS ≡

Cov(D, Y )
Var(D) = β + Cov(D, U)

Var(D)

Previous Slide
If X is binary then Cov(W , X )

Var(X ) = E(W |X = 1)− E(W |X = 0).
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The “Textbook” Instrumental Variables Model

D

Y

U

Z

Linear, Homogeneous Model
Y ← α + βD + U (notice: doesn’t include Z !)

Endogenous Treament
The treatment D is endogenous if Cov(D, U) ̸= 0.

Instrument Relevance
Z is relevant if Cov(Z , D) ̸= 0, i.e. Z → D.

Instrument Exogeneity / Exclusion
Z is exogenous if Cov(Z , U) = 0; i.e. Z ̸↔ U and Z ̸↔ Y .

Valid Instrument
Z is a valid instrument if it is relevant and exogenous.
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The “Textbook” Instrumental Variables Model
Linear, Homogeneous Model
Y ← α + βD + U

Valid Instrument
Z is relevant and exogenous: Cov(Z , D) ̸= 0 and Cov(Z , U) = 0

Exercise – Show that Cov(Z , Y )/Cov(Z , D) = β.

βIV ≡
Cov(Z , Y )
Cov(Z , D) = Cov(Z , α + βD + U)

Cov(Z , D) = βCov(Z , D) + Cov(Z , U)
Cov(Z , D) = β = ATE

Notice
When Z is binary this coincides with our idea from earlier in the lecture:

βIV ≡
Cov(Z , Y )
Cov(Z , D) = Cov(Z , Y )/Var(Z )

Cov(Z , D)/Var(Z ) = E(Y |Z = 1)− E(Y |Z = 0)
E(D|Z = 1)− E(D|Z = 0)
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What’s the role of instrument relevance?

Exercise: Why do we need Cov(Z , D) ̸= 0?

▶ Math answer: appears in denominator of the IV expression; can’t divide by zero!
▶ Causal inference answer: Cov(Z , D) means Z has no causal effect on D.

Exercise: can we test either of the IV assumptions?
▶ Cov(Z , D) is something we can calculate from data, so we can test it.
▶ Cov(Z , U) depends on U, something we don’t observe. That’s not quite the end of

the story though: register for Beyond the Basics if you want to learn more!
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Simulation Example
set.seed(1234)
n <- 5000
u <- rnorm(n)
z <- rbinom(n, size = 1, prob = 0.5)
cov(z, u) # exogenous instrument

## [1] -0.0005708841

d <- rbinom(n, size = 1, prob = plogis(2 * z - u - 1))
cov(d, u) # endogenous treatment

## [1] -0.1871822

cov(d, z) # relevant instrument

## [1] 0.09425341
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Simulation Example

alpha <- 0
beta <- 1
y <- alpha + beta * d + u

cov(d, y) / var(d) # OLS

## [1] 0.2513902

cov(d, u) / var(d) # This plus OLS should be approximately beta

## [1] -0.7486098

cov(z, y) / cov(z, d) # IV

## [1] 0.9939431
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Simulation Example

cov(z, y) / cov(z, d) # IV

## [1] 0.9939431

numerator <- mean(y[z == 1]) - mean(y[z == 0])
denominator <- mean(d[z == 1]) - mean(d[z == 0])

numerator / denominator # Should be identical to IV

## [1] 0.9939431
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But treatment effects are heterogeneous!

The Rest of the Lecture
▶ “Textbook” IV solves selection bias

but assumes homogeneous effects.
▶ Does βIV have any meaning if

treatment effects vary?

Crucial Question
Who gets treated and why?

Easiest Way to Understand
Experiments with non-compliance: the
treatment that is assigned may not be the
one that is received

Figure 1: The Elephant in the Room.
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Example: Pawn Lending in Mexico City2

Pawn Lending
▶ Valuable object (pawn) as collateral; receive loan for 70% of its appraised value.
▶ Regain your pawn by repaying loan plus interest by the deadline, otherwise lose it.

Status Quo Contract
▶ Single payment due at the end of three months; no reminders.
▶ Over 40% of borrowers default, losing their pawn and any payments made.
▶ Strictly worse off than if they’d sold their pawn for 100% of its appraised value!

New “Commitment” Contract
Monthly payments, small penalties for late payment & reminders. Fewer defaults?

2See “The Controlled Choice Design and Privated Paternalism in Pawnshop Borrowing” for more.
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Example: Pawn Lending in Mexico City

Randomized Controlled Trial
▶ Z = 0 =⇒ status quo contract
▶ Z = 1 =⇒ choice of contracts

One-sided Non-compliance
▶ Everyone with Z = 0 receives the

status quo contract
▶ People with Z = 1 can opt-in to the

new “commitment” contract.

Research Question
What is the causal effect of receiving the
new contract. Figure 2: Commitment Choice.
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Compliers: People who only take the treatment when offered.
One-sided Non-compliance
Z is randomly assigned; Z = 0 =⇒ D = 0; Z = 1 =⇒ free to choose D.

First Stage: Z → D
▶ Effect of treatment offer on treatment receipt; probably varies across people!
▶ One-sided Non-compliance =⇒ two possible Z → D effects

▶ Effect is zero: D = 0 regardless of Z . (cf. “doomed” from disease example)
▶ Effect is one: switch from D = 0 to D = 1. (cf. “cured” from disease example)

Complier
▶ Someone who only takes treatment when offered: Z → D effect is one
▶ Pawn Example: someone who would choose the commitment contract, if offered.
▶ It’s likely that compliers have systematically different treatment effects!
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IV with Heterogeneous Treatment Effects: One-sided Non-compliance
Let C = 1 if complier, zero otherwise. Then:

D = C · Z =⇒ Y = Y0 + D(Y1 − Y0) = Y0 + C · Z (Y1 − Y0).

Assumption: Z |= (C , Y0, Y1)
E(Y |Z = 1) = E[Y0 + C · (Y1 − Y0)|Z = 1] = E(Y0) + E[C · (Y1 − Y0)]

E(Y |Z = 0) = E(Y0|Z = 0) = E(Y0)

Intent to Treat: (Z → Y )

ITT ≡ E(Y |Z = 1)− E(Y |Z = 0) = E[C · (Y1 − Y0)]
= EC [C · E(Y1 − Y0|C)] = E(Y1 − Y0|C = 1)P(C = 1)
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IV with Heterogeneous Treatment Effects: One-sided Non-compliance

Previous Slide
D = C · Z , Assumption: Z |= (C , Y0, Y1) , and ITT = E(Y1 − Y0|C = 1)P(C = 1)

First Stage: (Z → D)

FS ≡ E(D|Z = 1)− E(D|Z = 0) = E(C |Z = 1)− 0 = E(C) = P(C = 1)

Result: IV = E(Y1 − Y0|C = 1)
▶ Under 1-sided non-compliance & heterogeneous treatment effects, IV equals the

average causal effect for compliers.
▶ Since we divide by P(C = 1), need this to be positive.
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One-sided Non-compliance: The Compliers are The Treated

Previous Slide
IV = ITT/FS = E(Y1 − Y0|C = 1).

Two Observations
▶ Conditioning on (Z = 1, C = 1) is equivalent to conditioning on D = 1.
▶ Properties3 of conditional independence: Z |= (Y0, Y1, C) =⇒ Z |= (Y1 − Y0)|C .

Punchline
Under 1-sided non-compliance and heterogeneous treatment effects, IV equals TOT!

TOT ≡ E(Y1 − Y0|D = 1) = E(Y1 − Y0|Z = 1, C = 1)
= E(Y1 − Y0|C = 1) = IV

3Specifically: “Weak Union” and “Decomposition”. See https://expl.ai/LXPVDDN and Chapter 2.
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Example: Pawn Lending in Mexico City
▶ Only 11% choose commitment.
▶ TOT for default is negative:

commitment lowers default for the
sort of person who chooses it

▶ Low take-up leads to relatively
imprecise estimates.

Figure 3: He probably didn’t choose
commitment.
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Example: The 1944 British Education Act4

The minimum school-leaving age in
Britain increased from 14 to 15 in 1947.
Within two years of this policy change,
the portion of 14-year-olds leaving school
fell from 57% to less than 10%.

The finding that some adults reported
finishing school at age 14, even after the
school-leaving age had been changed, may
reflect measurement error, noncompliance,
or delayed enforcement.

What is the causal effect of staying in
school until 15 on wage? Figure 4: What a difference a year makes!

4Quotes from Oreopoulos (2006).
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Example: The 1944 British Education Act
Simplified Version
After policy change all must be treated;
before some choose to be treated.

Z = 0
▶ Turned 14 just before policy change.
▶ Can choose D = 0 or D = 1

Z = 1
▶ Turned 14 just after policy change.
▶ Forced to have D = 1

Always-Taker
No Z → D causal effect: would say in
school until age 15 regardless.

Figure 5: What a difference a year makes!
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Two Kinds of One-sided Non-compliance
Pawn Lending Example
▶ Z = 0 =⇒ D = 0 but Z = 1 =⇒ can choose D = 0 or 1.
▶ Someone who chooses D = 1 when Z = 1 is called a complier.
▶ Assumptions: Z |= (C , Y0, Y1) and there are at least some compliers.
▶ IV gives average causal effect for compliers; equivalent to TOT

British Education Example
▶ Z = 1 =⇒ D = 1 but Z = 0 =⇒ can choose D = 0 or 1.
▶ Someone who chooses D = 1 when Z = 0 is called an always-taker
▶ Assumptions: Z |= (A, Y0, Y1) and not everyone is an always-taker.
▶ IV gives the average causal effect for people who are not always-takers.
▶ Equivalent to the treatment on the untreated: E(Y1 − Y0|D = 0).
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Example: KIPP Academy Lynn5

The nation’s largest network of charter schools is
the Knowledge is Power Program (KIPP).

KIPP schools target low income and minority
students and . . . feature a long school day and
year, selective teacher hiring, strict behavior norms,
and encourage a strong student work ethic.

Descriptive accounts of KIPP suggest positive
achievement effects, but critics argue that the
apparent KIPP advantage reflects differences
between students who attend traditional public
schools and students that choose to attend KIPP.

Figure 6: Terrifying artist’s rendition of a
Charter School Lottery.

5Angrist et al (2010) and Angrist et al (2012)
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Example: KIPP Academy Lynn6

KIPP Lynn . . . is the only charter school in Lynn
Masschusetts, a low income city north of Boston.

Statewide regulations require Massachusetts
charter schools to use a lottery when
oversubscribed.

The 2005-2008 admissions lotteries are used here
to develop a quasi-experimental research design.
These randomized lotteries allow us to estimate the
causal effect of KIPP Lynn on achievement, solving
the problem of selection bias that plagues most
studies of school effectiveness.

6Angrist et al (2010) and Angrist et al (2012)
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Example: KIPP Academy Lynn7

Lottery
Z = 1 if offered place at KIPP Lynn.

Two-sided Noncompliance
▶ Z = 0 ̸⇒ D = 0; Z = 1 ̸⇒ D = 1
▶ 25% of lottery winners didn’t attend KIPP.
▶ 3.5% of lottery losers did attend KIPP.

Research Question
What is the causal effect of attending KIPP Lynn
(D = 1) on math test scores Y ?

7Slightly simpler version of this example as presented in Mastering ’Metrics.
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Two-sided Non-compliance and Potential Treatments

Potential Treatments (D0, D1)
▶ D0 is a person’s D if Z = 0
▶ D1 is a person’s D if Z = 1
▶ Observe D = (1− Z )D0 + ZD1

▶ Compare to the disease example!

Type D0 D1 (D1 − D0)
Never-taker (N) 0 0 0
Always-taker (A) 1 1 0
Complier (C) 0 1 1
Defier (D) 1 0 -1

Table 1: The four “compliance types” and
their respective causal effects of Z on D.

KIPP Example
▶ Never-takers would not attend KIPP regardless of the lottery outcome.
▶ Always-takers would attend KIPP regardless of the lottery outcome.
▶ Compliers would attend KIPP if they won the lottery, but not if they lost.
▶ Defiers would only attend KIPP if they lost the lottery, just to spite you!
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Assumption 1: No Defiers

What’s the problem?
If treatment effects vary, need to compare
average values of Y1 and Y0 for same
group of people to learn a causal effect.

Type D0 D1 D(Z )
Never-taker (N) 0 0 0
Always-taker (A) 1 1 1
Complier (C) 0 1 Z
Defier (D) 1 0 1− Z

Table 2: The four “compliance types” and
their treatment take-up rules.

With Defiers
▶ Can’t tell if someone with (Z = 1, D = 0) is a never-taker or defier.
▶ Can’t tell if someone with (Z = 0, D = 1) is an always-taker or defier.
▶ Notice: there were automatically no defiers in the one-sided examples!
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Assumption 1: No Defiers

Without Defiers
▶ (Z = 1, D = 0) =⇒ never-taker.
▶ (Z = 0, D = 1) =⇒ always-taker.

Notation
▶ A = 1 if always-taker, zero otherwise
▶ C = 1 if complier, zero otherwise

Type D0 D1 D(Z )
Never-taker (N) 0 0 0
Always-taker (A) 1 1 1
Complier (C) 0 1 Z

Table 3: The three “compliance types” if we
assume no defiers.

Implication
No Defiers implies that D = A + C · Z and hence

Y = Y0 + D(Y1 − Y0) = Y0 + (A + C · Z )(Y1 − Y0)
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Assumption 2: Z |= (Y0, Y1, C , A)
Previous Slide
No Defiers Assumption ⇒ D = A + C · Z hence Y = Y0 + (A + C · Z )(Y1 − Y0) .

Using Assumption 2
E(Y |Z = 1) = E[Y0 + (A + C)(Y1 − Y0)|Z = 1] = E[Y0 + (A + C)(Y1 − Y0)]

E(Y |Z = 0) = E[Y0 + A(Y1 − Y0)|Z = 0] = E[Y0 + A(Y1 − Y0)]

ITT ≡ E(Y |Z = 1)− E(Y |Z = 0) = E[C(Y1 − Y0)] = E(Y1 − Y0|C = 1)P(C = 1)

FS ≡ E(D|Z = 1)− E(D|Z = 0) = E(C + A|Z = 1)− E(A|Z = 0) = E(C)

Therefore: IV = E(Y1 − Y0|C = 1).
This is often called the Local Average Treatment Effect (LATE)
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Example: KIPP Academy Lynn

▶ The local average treatment effect of
attending KIPP Academy Lynn for one year is
approximately half a standard deviation of
math test scores.

▶ This is quite a sizable effect, but remember
that it is not the ATE!

▶ We might wonder how the effect for compliers
differs from that for the population at large.
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Discussion of IV with Heterogeneous Treatment Effects
▶ If treatment effects are heterogeneous, IV does not give us the ATE:

▶ One-sided non-compliance: TOT or TUT
▶ Two-sided non-compliance: LATE

▶ Who are the compliers? Better LATE than nothing?
▶ Different instruments for the same treatment can yield different causal effects, since

different people would choose to comply.
▶ Three assumptions:

1. Relevance: E(D|Z = 1) ̸= E(D|Z = 0) is testable.
2. No defiers (only in needed in 2-sided case)
3. Exclusion/Exogeneity: Z |= (Y0, Y1, C , A) is not.

▶ Crucial question is whether Z could have a causal effect of its own.

Much more to say about IV! Why not sign up for Beyond the Basics in September?
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Appendix
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Derivations for The Other Kind of One-sided Non-compliance
Intent-to-treat: Z → Y
ITT = E(Y |Z = 1)− E(Y |Z = 0)

Treatment Take-up
▶ A = 1 if always-taker
▶ D = Z + A · (1− Z )

Outcome
Y = Y0 + D(Y1 − Y0)

Combining
Y = Y0 +[Z +A · (1−Z )](Y1−Y0)

Assumption
Z |= (A, Y0, Y1)

E(Y |Z = 1) = E[Y0 + (Y1 − Y0)|Z = 1]
= E(Y1)

E(Y |Z = 0) = E[Y0 + A · (Y1 − Y0)|Z = 0]
= E(Y0) + E[A · (Y1 − Y0)]

ITT = E(Y1)− E(Y0)− E[A · (Y1 − Y0)]
= E[(1− A)(Y1 − Y0)]
= EA [(1− A) · E(Y1 − Y0|A)]
= E(Y1 − Y0|A = 0)P(A = 0)
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Derivations for The Other Kind of One-sided Non-compliance

Intent-to-treat: Z → Y
ITT = E(Y1 − Y0|A = 0)P(A = 0)

First-Stage: Z → D
FS ≡ E(D|Z = 1)− E(D|Z = 0)

= 1− E(D|Z = 0)

Treatment Take-up
▶ A = 1 if always-taker
▶ D = Z + A · (1− Z )

Assumption
Z |= (A, Y0, Y1)

FS = 1− E(A|Z = 0)
= 1− E(A)
= 1− P(A = 1) = P(A = 0)

IV ≡ ITT
FS = E(Y1 − Y0|A = 1)P(A = 0)

P(A = 0)
= E(Y1 − Y0|A = 0)

In this case IV equals the ATE for people who only
take the treatment when forced to do so.
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Derivations for the The Other Kind of One-sided Non-compliance

Previous Slide
IV = ITT/FS = E(Y1 − Y0|A = 0).

Two Observations
▶ Conditioning on (Z = 0, A = 0) is equivalent to conditioning on D = 0.
▶ Properties8 of conditional independence: Z |= (Y0, Y1, A) =⇒ Z |= (Y1 − Y0)|A.

Punchline
Under this form of 1-sided non-compliance, IV is the treated on the untreated effect:

TUT ≡ E(Y1 − Y0|D = 0) = E(Y1 − Y0|Z = 0, A = 0)
= E(Y1 − Y0|A = 0) = IV

8Specifically: “Weak Union” and “Decomposition”. See https://expl.ai/LXPVDDN and Chapter 2.
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