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Treatment Effects / Causal Inference – “What If?”

▶ Outcome Variable: Y
▶ Treatment Variable: D = 0 if

untreated and D = 1 if treated
▶ Treatment Effect: if we changed D

from 0 to 1, how would Y change?
▶ Example: returns to education

Important!
A treatment effect is a hypothetical
within-person comparison at a particular
moment in time, always involving a
counterfactual.

Figure 1: Would Alice earn a higher wage if
she attended university?
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Potential Outcomes Framework
▶ Imagine that each person has two

potential outcomes: (Y0, Y1).
▶ This is a thought experiment: we

only see the observed outcome Y .
▶ Treatment variable determines which

potential outcome is observed:
▶ D = 0 ⇒ Y = Y0

▶ D = 1 ⇒ Y = Y1

▶ Only one of (Y0, Y1) is observed for
any given person at any given time.

▶ Unobserved potential outcome is a
counterfactual, i.e. a what if? Figure 2: Alice earns Y1 if she attends

university, Y0 if she doesn’t attend. Her
treatment effect is (Y1 − Y0).
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What is this course about?
Treatment Effect: (Y1 − Y0)
A hypothetical, within-person comparison of potential outcomes.

Challenges
1. Heterogeneous Treatment Effects

▶ Different people probably have different potential outcomes.
▶ If so, they likely have different treatment effects.

2. Fundamental Problem of Causal Inference
▶ We can never observe both Y0 and Y1 for the same person at the same time.
▶ So, in practice, we can only make between person comparisons.

3. Selection
▶ It matters how D is assigned: who gets treated and why?
▶ Perhaps people know their treatment effects and choose to get treated.
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Example with Heterogeneous Treatment Effects: (Potentially) Fatal Disease

Y0 Y1 (Y1 − Y0)
Doomed 0 0 0
Cured 0 1 1
Allergic 1 0 -1
Immune 1 1 0

Figure 3: Four different kinds of people: all
possible combinations of potential outcomes
when Y is binary.

▶ Outcome: Y = 1 survive; Y = 0 die.
▶ Treatment: D = 1 take drug, D = 0 don’t take drug.
▶ Helps Cured, harms Allergic, no effect on Doomed / Immune
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An omniscient being has told you the shares of Doomed, Allergic, Immune.
Exercise: What is the average value of ∆ ≡ (Y1 − Y0)?

Y0 Y1 (Y1 − Y0) Share
Doomed 0 0 0 20%
Cured 0 1 1 20%
Allergic 1 0 -1 40%
Immune 1 1 0 20%

Solution: By the definition of Expected Value E(∆) = −0.2.

E(∆) = −1 × P(∆ = −1) + 0 × P(∆ = 0) + 1 × P(∆ = 1)
= P(∆ = 1) − P(∆ = −1)
= P(Cured) − P(Allergic)
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What can we learn without the help of an omniscient being?
Fundamental Problem of Causal Inference
Only observe one of the potential outcomes (Y0, Y1) for any individual.

D Y Y0 Y1 (Y1 − Y0)
Amir 1 1 ? 1 ?
Brooke 0 0 0 ? ?
Carlos 0 1 1 ? ?
Derek 1 1 ? 1 ?
Elise 0 1 1 ? ?
Felix 1 1 ? 1 ?
Gabriela 0 1 1 ? ?
Hannah 0 0 0 ? ?
Issac 0 1 1 ? ?
Jasmine 1 1 ? 1 ?

Exercise: What can’t we learn?
1. Amir’s individual treatment effect.

2. The fraction of people with a positive
treatment effect.

3. The variance of treatment effects.

4. The average treatment effect.

Solution: We can never learn 1, 2, or 3.
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We never observe both Y0 and Y1 for the same person at the same time.

Can’t learn any of these:
▶ Individual treatment effects
▶ Joint distribution of (Y0, Y1), i.e. how they co-vary
▶ Distribution of individual treatment effects (Y1 − Y0)
▶ Share of people who benefit from the treatment.

Y1
0 1

Y0
0 P(Doomed) P(Cured)
1 P(Allergic) P(Immune)

Figure 4: Joint Distribution of (Y0, Y1)

P(·)

(Y1 − Y0)
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The Average Treatment Effect (ATE) is Very Special

Exercise: Why can’t we learn Var(Y1 − Y0)?

Depends on the joint distribution of (Y0, Y1) through Cov(Y0, Y1)

Var(Y1 − Y0) = Var(Y1) + Var(Y0) − 2Cov(Y0, Y1).

What’s special about E(Y1 − Y0)?
▶ Linearity of Expectation: E(cW ) = cE(W ), E(W + Z ) = E(W ) + E(Z ).
▶ Implication: E(Y1 − Y0) = E(Y1) − E(Y0) regardless of joint distribution!
▶ Between-person comparison replaces infeasible within-person comparison.
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Randomized Experiments: Basic Intuition
D Y Y0 Y1 (Y1 − Y0)

Amir 1 1 ? 1 ?
Brooke 0 0 0 ? ?
Carlos 0 1 1 ? ?
Derek 1 1 ? 1 ?
Elise 0 1 1 ? ?
Felix 1 1 ? 1 ?
Gabriela 0 1 1 ? ?
Hannah 0 0 0 ? ?
Issac 0 1 1 ? ?
Jasmine 1 1 ? 1 ?

▶ Suppose we flipped a coin to assign D
▶ Then the observed Y0 values are a

representative sample of all Y0 values.
▶ Similarly, the observed Y1 values are a

representative sample of all Y1 values.
▶ Difference of sample mean outcomes is a

good estimator of ATE = E(Y1) − E(Y0).
▶ Between-person comparison replaces

infeasible within-person comparison!

Exercise: Calculate (Ȳ1 − Ȳ0)

Ȳ1 − Ȳ0 = 1
4(1 + 1 + 1 + 1) − 1

6(0 + 1 + 1 + 1 + 0 + 1) = 1 − 2
3 = 1

3
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Review of what we’ve covered so far1

▶ Binary Treatment D ∈ {0, 1} and Observed Outcome Y
▶ Y depends on Potential Outcomes (Y0, Y1) via

Y = (1 − D)Y0 + DY1 = Y0 + D(Y1 − Y0)

▶ Only one of (Y0, Y1) is observed for each person.
▶ Unobserved potential outcome: counterfactual / what if?
▶ Can’t learn quantities that depend on joint distribution of (Y0, Y1).
▶ Average Treatment Effect: ATE ≡ E(Y1 − Y0) = E(Y1) − E(Y0)
▶ ATE doesn’t depend on joint distribution; can learn it from randomized experiment

1Video on potential outcomes: https://expl.ai/QHUAVRV
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Our Biggest Challenge: Selection into Treatment (aka Counfounding)

Observational Data
Data that do not come from a randomized
controlled experiment.

Selection into Treatment
D not randomly assigned ⇒ treated and
untreated likely differ many other ways,
particularly if people can choose D.

Confounder
Factor that influences both outcomes Y
and whether or not people are treated D.

Figure 5: Selection into treatment
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Our Biggest Challenge: Selection into Treatment (aka Counfounding)

Smoking & Cancer
Smokers may be less health conscious in
general than non-smokers.

Returns to Education
Oxford undergraduates are on average
richer and have higher levels of academic
preparation before university.

Voting Behavior
Fox News viewers are older and more likely
to live in rural rather than urban areas.

Figure 6: Selection into treatment
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Our Biggest Challenge: Selection into Treatment (aka Confounding)

Why not randomize everything?
Randomization may be impossible,
impractical or unethical.

Smoking & Cancer
Unethical to randomly assign some people
to smoke two packs of cigaretts per day.

Returns to Education
I’d be fired if I randomly admitted some
students to Oxford and rejected the rest.

Voting Behavior
Can’t force some people to watch Fox
news and keep track of how they voted. Figure 7: Selection into treatment
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Selection into Treatment in the Disease Example

D Y Y0 Y1 (Y1 − Y0)
Amir 1 1 0 1 1
Brooke 0 0 0 0 0
Carlos 0 1 1 0 -1
Derek 1 1 0 1 1
Elise 0 1 1 0 -1
Felix 1 1 1 1 0
Gabriela 0 1 1 0 -1
Hannah 0 0 0 0 0
Issac 0 1 1 0 -1
Jasmine 1 1 1 1 0

Population of 10 People
▶ 2 Doomed: Brooke & Hannah
▶ 2 Cured: Amir & Derek
▶ 4 Allergic: Carlos, Elise, Gabriela & Issac
▶ 2 Immune: Felix & Jasmine

Exercise
Calculate the ATE and compare it to (Ȳ1 − Ȳ0).

Solution
▶ ATE = 1

10(1 − 1 + 1 − 1 − 1 − 1) = −0.2

▶ (Ȳ1 − Ȳ0) ≈ 0.33

19 / 44



Selection into Treatment in the Disease Example

D Y Y0 Y1 (Y1 − Y0)
Amir 1 1 0 1 1
Brooke 0 0 0 0 0
Carlos 0 1 1 0 -1
Derek 1 1 0 1 1
Elise 0 1 1 0 -1
Felix 1 1 1 1 0
Gabriela 0 1 1 0 -1
Hannah 0 0 0 0 0
Issac 0 1 1 0 -1
Jasmine 1 1 1 1 0

Population of 10 People
▶ 2 Doomed: Brooke & Hannah
▶ 2 Cured: Amir & Derek
▶ 4 Allergic: Carlos, Elise, Gabriela & Issac
▶ 2 Immune: Felix & Jasmine

Exercise
Calculate the ATE and compare it to (Ȳ1 − Ȳ0).
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Conditional Expectation: E(W |X = x)

Intuition
Average W among everyone with X = x , e.g. E(Wage|Attended University x).

Definition

E(W |X = x) ≡
∑
all w

w · P(W = w |X = x)

Linearity

E(cW |X = x) = cE(W |X = x)

E(W + Z |X = x) = E(W |X = x) + E(Z |X = x)
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Counterfactuals and Conditional Expectations

Actual: what happened to the untreated?
E(Y |D = 0) = E(Y0|D = 0) : average outcome actually experienced by untreated.

Actual: what happened to the treated?
E(Y |D = 1) = E(Y1|D = 1) : average outcome actually experienced by treated.

Counterfactual: what if they had been treated?
E(Y1|D = 0) : avg. Y untreated would have experienced if they had been treated.

Counterfactual: what if they hadn’t been treated?
E(Y0|D = 1) avg. Y treated would have experienced if they hadn’t been treated.

24 / 44



A Fundamental Decomposition2

E(Y |D = 1) − E(Y |D = 0)︸ ︷︷ ︸
Observed Difference of Means

= E(Y1|D = 1) − E(Y0|D = 0)

= E(Y1|D = 1) − E(Y0|D = 0) + E(Y0|D = 1) − E(Y0|D = 1)

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1) − E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

Treatment on the Treated (TOT)
Average treatment effect for the kind of people who actually get treated.

Selection Bias
Compares counterfactual outcome for the treated to actual outcome for the untreated.

2Video: https://expl.ai/DWVNRZU
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How might selection matter?

E(Y |D = 1) − E(Y |D = 0)︸ ︷︷ ︸
Observed Difference of Means

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT

+ [E(Y0|D = 1) − E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias

Returns to Education
Y = Wage; D = 1 attend Oxford; Y0 = wage if you attend; Y1 = wage if you don’t

Selection-on-gains
If people who benefit most are those who choose to attend Oxford then TOT > ATE.

Selection Bias
People who attend Oxford are richer and have higher levels of academic preparation. If
these factors are positively related to Y0 then (Selection Bias) > 0.
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TOT and Selection Bias in Disease Example

D Y Y0 Y1 (Y1 − Y0)
Amir 1 1 0 1 1
Brooke 0 0 0 0 0
Carlos 0 1 1 0 -1
Derek 1 1 0 1 1
Elise 0 1 1 0 -1
Felix 1 1 1 1 0
Gabriela 0 1 1 0 -1
Hannah 0 0 0 0 0
Issac 0 1 1 0 -1
Jasmine 1 1 1 1 0

Exercise: Calculate TOT & Selection Bias

TOT ≡ E(Y1 − Y0|D = 1)

= 1
4(1 + 1 + 0 + 0) = 0.5

SB ≡ E(Y0|D = 1) − E(Y0|D = 0)

= 1
4(0 + 0 + 1 + 1)

− 1
6(0 + 1 + 1 + 1 + 0 + 1)

= 1
2 − 2

3 = −1
6 ≈ −0.17
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Fundamental Decomposition in Disease Example
D Y Y0 Y1 (Y1 − Y0)

Amir 1 1 0 1 1
Brooke 0 0 0 0 0
Carlos 0 1 1 0 -1
Derek 1 1 0 1 1
Elise 0 1 1 0 -1
Felix 1 1 1 1 0
Gabriela 0 1 1 0 -1
Hannah 0 0 0 0 0
Issac 0 1 1 0 -1
Jasmine 1 1 1 1 0

E(Y |D = 1) − E(Y |D = 0)︸ ︷︷ ︸
Observed Difference of Means=1/3

= E(Y1 − Y0|D = 1)︸ ︷︷ ︸
TOT=1/2

+ [E(Y0|D = 1) − E(Y0|D = 0)]︸ ︷︷ ︸
Selection Bias=(−1/6)
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Conditional Expectation and Independence

E(W |X = x) ≡
∑
all w

w · P(W = w |X = x)

Exercise: If W and X are independent what can we say about E(W |X = x)?

E(W |X = x) ≡
∑
all w

w · P(W = w |X = x) =
∑
all w

w · P(W = w , X = x)
P(X = x)

=
∑
all w

w · P(W = w)P(X = x)
P(X = x) =

∑
all w

w · P(W = w)

≡ E(W )
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Randomization eliminates selection bias.
Independence3

▶ W |= X is shorthand for “W is statistically independent of X .”
▶ W |= X ⇐⇒ P(W = w , X = x) = P(W = w)P(X = x) for all w and x .
▶ Statistical independence implies conditional mean independence

W |= X =⇒ E[W |X = x ] = E[W ] and E[X |W = w ] = E[X ]

Random Assignment: D |= (Y0, Y1)

TOT = E(Y1|D = 1) − E(Y0|D = 1) = E(Y1) − E(Y0) ≡ ATE

Selection Bias ≡ E(Y0|D = 1) − E(Y0|D = 0) = E(Y0) − E(Y0) = 0

3See chapter 2 of the notes, https://expl.ai/LXPVDDN and my blog post for more on independence.
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Let’s try assigning the treatment at random!

library(tidyverse)

person <- c('Amir', 'Brooke', 'Carlos', 'Derek', 'Elise', 'Felix',
'Gabriela', 'Hannah', 'Issac', 'Jasmine')

y0 <- c(0, 0, 1, 0, 1, 1, 1, 0, 1, 1)
y1 <- c(1, 0, 0, 1, 0, 1, 0, 0, 0, 1)

potential_outcomes <- tibble(person, y0, y1)
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potential_outcomes

## # A tibble: 10 x 3
## person y0 y1
## <chr> <dbl> <dbl>
## 1 Amir 0 1
## 2 Brooke 0 0
## 3 Carlos 1 0
## 4 Derek 0 1
## 5 Elise 1 0
## 6 Felix 1 1
## 7 Gabriela 1 0
## 8 Hannah 0 0
## 9 Issac 1 0
## 10 Jasmine 1 1

35 / 44



potential_outcomes |>
summarize(ATE = mean(y1 - y0))

## # A tibble: 1 x 1
## ATE
## <dbl>
## 1 -0.2
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set.seed(1983)

treatments <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

treatments

## [1] 0 0 0 0 0 1 1 1 1 1
treatments <- sample(treatments)

treatments

## [1] 0 0 0 1 1 1 0 1 1 0
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potential_outcomes |>
bind_cols(d = treatments) |>
mutate(y = (1 - d) * y0 + d * y1)

## # A tibble: 10 x 5
## person y0 y1 d y
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Amir 0 1 0 0
## 2 Brooke 0 0 0 0
## 3 Carlos 1 0 0 1
## 4 Derek 0 1 1 1
## 5 Elise 1 0 1 0
## 6 Felix 1 1 1 1
## 7 Gabriela 1 0 0 1
## 8 Hannah 0 0 1 0
## 9 Issac 1 0 1 0
## 10 Jasmine 1 1 0 1
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potential_outcomes |>
bind_cols(d = treatments) |>
mutate(y = (1 - d) * y0 + d * y1) |>
group_by(d) |>
summarize(ybar = mean(y))

## # A tibble: 2 x 2
## d ybar
## <dbl> <dbl>
## 1 0 0.6
## 2 1 0.4
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potential_outcomes |>
bind_cols(d = treatments) |>
mutate(y = (1 - d) * y0 + d * y1) |>
group_by(d) |>
summarize(ybar = mean(y)) |>
pull(ybar)

## [1] 0.6 0.4
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potential_outcomes |>
bind_cols(d = treatments) |>
mutate(y = (1 - d) * y0 + d * y1) |>
group_by(d) |>
summarize(ybar = mean(y)) |>
pull(ybar) |>
diff()

## [1] -0.2
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run_experiment <- function() {

treatments <- sample(c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1))

potential_outcomes |>
bind_cols(d = treatments) |>
mutate(y = (1 - d) * y0 + d * y1) |>
group_by(d) |>
summarize(ybar = mean(y)) |>
pull(ybar) |>
diff()

}
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run_experiment()

## [1] 0.2
run_experiment()

## [1] -0.6
run_experiment()

## [1] 0.2
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simulations <- replicate(5000, run_experiment())

mean(simulations)

## [1] -0.19528
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